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Discrete Mathematics, Spring 2023

Practice problems final exam

Solutions

(@) Vx,xc A= (xe BAx ¢C).
Negation: Ix,x e AN (x¢ BVxeC).
(b) We do it in several steps:

VX, (X € P(A)— P(B)) = X € P(A—B)

VX,(X CANX¢B)=XCA-B
VX,(VyeX,yeANTyeX,y¢B) = VyeX,yce ANy ¢B.

Negation:

X, (VyeX,yeANTyeX,y¢B)A(IyeX,y¢AVy€EB).

(@ ~R:VxeR,IyeR, y>xAVzER, y#7>+5z
(b) ~R:JacA,YbeB, (acCAbEC)V(beCNa¢C).

(a) Suppose a*> | bAD? | c. Then b = a’k A c = b’t, for some k,t € Z. It follows that
c = bt = (a’k)’t = a8 (K*t) = a® | c.

(b) Since nisodd, n=2k+1,forsomek € Z. Thenn? —1 = (2k+1)?> =4k>+4k+1—1=
4k(k+ 1). We proceed by cases.

Case 1: k is even. Then k = 2¢, with t € Z. Then 4k(k+1) = 8¢(2t +1) = 8 | n*> — 1.
Case 2: k is odd. Then k =2h+ 1, with h € Z. Then 4k(k+1) =4(2h+1)2h+ 1+
1) =42h+1)2h+2) =82h+1)(h+1) =8 |n® — 1.

(c) Suppose 14 | n. Then n = 14k, with k € Z. Thus, n = 2(7k) =7(2k) =2 |n A7 | n.
Conversely, suppose 2 | n A7 | n. Then n = 2k An = Tt, for some k,t € Z. It follows
that 2k = 7¢. Then 7¢ is even, but since 7 is odd, this implies that 7 is even. So t = 2s,
s € Z. Now we have n = 7(2s) = 14s. This shows that 14 | n

(d) The implication 6 | n A 10 | n == 60 | n is not true. Counterexample: n = 30: we have
630710 | 301601 30.

4. We use induction.

Base step: 4 | 3° — 1 =0 is true.

Inductive step. Suppose 4 | 3% — 1, for k > 0. We have 3(2(k+1) _ 1 = 3% .9 1. Since
4] 3%k _ 1, we can write 32k = 47 + 1, with ¢ € Z. Then

3%.9 1= (4r41)9—1=361+9—1=361+8=4(9r+2) = 4|32k _ 1,



5.

(a)

(b)

Reflexive: Vx € Z,x R x since x = x.

Symmetric: suppose x,y € Z and xRy. Thenx=yVxy>0=—y=xVyx > 0=
YR x.

Transitive: suppose x,y,z € Zandx RyAyRz. Thenx=yVxy >0andy=2zVyz > 0.
We proceed by cases.

Case 1. If x = y is true:

i. ify=zistrue,thenx=y=z=—x=12.

ii. If yz > 0is true, thenx =yAyz > 0= xz > 0.
—x=zVxz>0=xRz
Case 2. If xy > 0 is true:

i. ify=zistrue,theny=zAxy > 0= xz> 0.

ii. If yz > O is true, then xy > 0Ayz > 0 = xy’z > 0 = xz > 0.
= xz>0=x=zVxz>0istrue = xRz
The set of equivalence classes is {[x] :x € Z}. If x € Z, then [x]| ={y € Z: xRy} =
{y€Z:x=yVxy>0}. In particular, we have [0] = {y€Z:0=yVv0> 0} = {0},
[l]={y€Z:y=1Vy>0}=Nand [-1|={y€Z:y=—-1Vy <0} =7Z", where
7~ ! denotes the set of negative integers. Every integer is in exactly one of these three
equivalence classes. Therefore there are only three equivalence classes.

6. We have R™! = {(y,x) €AxA:(x,y) ER} and S=RNR ' ={(x,y) EAxA: (x,y) €

(a)
(b)
()
(d)
(e)

RA(x,y) €ER'} ={(x,y) EAxA:xRyAyRx}. We now prove that S is an equivalence
relation.

Reflexive: since R is reflexive, we have x Rx Ax Rx = (x,x) € S = S is reflexive.

Symmetric: let (x,y) € S. Then (x,y) € RA(y,x) ER=—=xRyYAyRx = y;R;xA\xRy—-

(y,x) € S, which implies that S is symmetric.

Transitive: suppose (x,y) € SA(y,z) €S. Thus, xRyAyRxAyRzAzRy=— (x RyAyR z)\
(zRyAyR x) = (since R is transitive) x R z Az R x = (x,z) € S, which implies that S is

transitive.

We first of all write down the partitions of A:

{{1,2,3}}.
{1}1,{2,3}}
{25 {1,3}}
{3 {1,2}}.
{1342}, {3})

To each partition it corresponds an equivalence relation.

R=1{(1,1),(2,2),(3,3),(1,3),(3,1),(2,3),(3,2),(1,2),(2,1)}.
R=1{(1,1),(2,3),(3,2),(2,2),(3,3)}.
R=1{(2,2),(1,3),(3,1),(3,3),(1,1) }.
R=1{(3,3),(1,2),(2,1),(1,1),(2,2)}.
R={(1,1),(2,2),(3,3)}.



8. (a) Wehave f1(Y)={x€A: f(x) €Y} and f(f'(Y)) = {f(x) :x€ f1(Y)}. Let
be f(f~1(Y)). Then b = f(a), for some a € f~1(Y). This means f(a) € Y, which
implies b € Y = f(f~'(¥)) CY.

(b) We use double inclusion. Let x € f~!(Y UZ). This means f(x) € YUZ = f(x) €
YVfx)eZ=xe f(Y)vxe f1(Z2) = xe f1(Y)Uf1(Z), which implies
Y yuz) C -1 (Y)uf'(Z). Conversely, suppose x € f~1(Y)U f~!(Z). This im-
pliesx € fA'Y)vxe f1(Z2) = f(x) €YV f(x) €Z= f(x) EYUZ=x €
Yy uZz). Therefore, f1(Y)Uf1(Z)C FH(YUZ).

(c) We use double inclusion. Letx € f~!(YNZ). Then f(x) €Y NZ = f(x) €Y Af(x) €
Z=xc f'(Y)Ax€ f1(Z2) = xc f1(Y)nf~1(Z), which implies f~'(¥Y N
Z)C fFYY)nfY(Z). Conversely, let x € f~1(Y)Nf~!(Z). Thenx € f1(Y)Ax €
fY2) = f(x) YA f(x) €Z= f(x) eYNZ =>x € f~' (Y NZ), which implies
Finns @ crivnz),

9. Injective: suppose ¢ (x,y) = ¢(x',y’). This implies (x+y,x—y) = (X' +y',.x' —y'), i.e.

x+y=x+y
{x_i_x,_ﬁ, = x=xNy=y = (x,y) = ().

Surjective: let (a,b) € R?. We solve the equation ¢ (x,y) = (a,b). We have
a+b

x+y=a X
—
x—y:b a

y:

(S}

b

2

It follows that ¢ is surjective and its inverse is given by ¢ ! (x,y) = (x—l—y x—y> .

27 2
10. (a) Injective: let n,m € Z, and suppose f(n) = f(m). We proceed by cases.
Case 1: n,m > 0. Then f(n) = f(m) implies n> —4=m?> 4 =n>=m> =n=m
(since n,m > 0).
3m

3
Case 2: n,m < 0. Then f(n) = f(m) implies ?n =5 = n=m

3
Case 3: n>0, m < 0. Then f(n) = f(m) implies n*> — 4 = ?m If we set n =1 and
m = —5, we have f(1) = f(—5). Thus, f is not injective.
1

1
Surjective: let a = =. The equation f(n) = 3 has no solutions. In fact, if n > 0, the

2

1 3 1
equation n*> —4 = 3 has no solutions in Z, and if n < 0, the equation =3 also has
no solutions in Z.

20’ +3n*—23n

n
(b) We want to prove by induction that Z (i —4) = , forevery n € N.

i=1 6
—18
Base step: setn = 1. We have —3 = % = —3, which is true.
d 2k +3K*—23k

Inductive step: assume Z’(i2 —4) , for k > 1. We have

i=1

6

2K 43k* —23k

g + K 2k+1—4

(i —4) = i(i24)+(k+1)24

_ 2k +9k* —11k— 18 _ (check) 2(k+1)3+3(k+1)2—23(k+1)_

6 6




11. We define a function f : A — B by writing explicitly f(1), f(2), f(3):

@ f(1)=a,f(2) =, f(3) = a.
b) f(1) =, f(2) =a,f(3) =B.
© f(1)=a,f(2)=B,f(3) =a.
@ f(1) =, f(2) =B, f(3)=B.
@ f(1)=B,f2) =0, f(3) =a.
@) f(1)=B,f(2) = e, f(3) = B.
@ f(1)=B,f(2)=B,f(3) = e
() f(1) =B, f(2)=B,f(3)=B.

None of the functions are injective. All apart from (a) and (g) are surjective.

12. Reflexive: Vx € X, x R x since f(x) = f(x).
Symmetric: Vx,y € X,x Ry = f(x) = f(y) = y R x.

Transitive: Vx,y,z € X, x RyAyRz= f(x) = fOO)ANf) = f(z) = f(x) = f(y) =
fz) = f(x) =f(z) = xRz



