CH. 6 PROOF BY COMMADICION

ex. Proposition. There are No instegens a, b e I such that 51a + 87b = 1.



FALSE THE STANGUENT MUST BE ONE OR THE OTHER.

PILLOF BY CONTINDICTION:

- Assume THE STAMEMENT IS FALSE.
- 2 FORM LOGICAL ANGUNELY TO CONCLUDE
- SOMETHING KNOWN TO BE FALSE (CONTRADICTION)

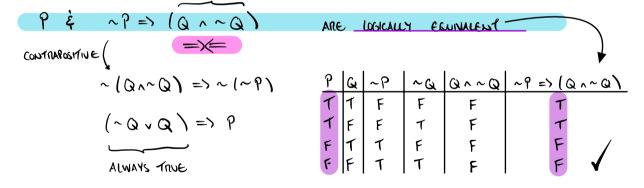
 THE ASSUMPTION CANNOT BE FALSE.

 THEREFORE ASSUMPTION IS TRUE.

Proof. (1) Assume there are integers a & b such that 51a + 87b = 1.

- (1) THEN 3(17a+29b)=1 AND 17a+29b=3. Since 17a+29b EZ, 17 FOLLOWS THAT 3 EZ.
- 3 This contradicts the Fact That $\frac{1}{3}$ is not an integer. Therefore, our assumption that are integers $a,b\in\mathbb{Z}$. Such that 51a+67b=1 must be false.

CONTRADICTION: NEVER TRUE



Def: $X \in \mathbb{R}$ is <u>national</u> if $X = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$.

THE SET OF NATIONAL NUMBERS IS

$$Q = \{ x \in \mathbb{R} : x = \frac{a}{b}, \text{ with } a, b \in \mathbb{Z} \}.$$

 $X \in \mathbb{R}$ is irrational if $x \neq \frac{a}{b}$ for any $a, b \in \mathbb{Z}$

ex. THEOREM. TO IS IRRATIONAL.

Proof. Assume, For the sake of contradiction, that $\sqrt{2} \in \mathbb{Q}$. By Definition, $\sqrt{2} = \frac{a}{b}$.

Without loss of Generality, Let $\frac{a}{b}$ be reduced. In Panticular, $a \notin b$ are Not Both EVEN.

THEN $\sqrt{2} = \frac{a}{b} \implies \sqrt{2}b = a \implies 2b^2 = a^2$.
Thus a^2 is even, AND SINCE THE PRODUCT OF TWO ODD NUMBERS IS DOD, IT MUST BE THAT a is even. Let a = 2x, $x \in \mathbb{Z}$.

THEN $2b^2 = (2x)^2 = 4x^2 = b^2 = 2x^2$. Thus b^2 is EVED, AND so be MUST BE EVED. LET b = 2y, $y \in \mathbb{Z}$.

Thenefore Both a ξ b Are even, AND $\frac{a}{b}$ is Not reduced. This contradicts the fact that $\frac{a}{b}$ is Reduced.

THUS, OUR ASSUMPTION THAT $\sqrt{2} \in \mathbb{Q}$ must be false. THAT IS, $\sqrt{2}$ IS INNATIONAL.

ex. THEREM. THERE ARE INFIDITELY MANY PRIME NUMBERS.

Prime numbers $p_1, p_2, \ldots, p_n \in \mathbb{N}$.

Set a= p. p. ... p. + 1 EN.

like all hadural numbers Gremer than 1, a has at least 1 prime divisor, say p_k . Then $a = p_k \times \text{ for some } \times \in N$.

WE HAVE PKX = P, P2 ... PK PK+1 ... Pn + 1

=)
$$\frac{1}{p_{k}} = x - p_{1}p_{1}...p_{k-1}p_{k+1}...p_{n} \in \mathbb{Z}$$
.

But $\frac{1}{p_K}$ cannot be an integer. =

PROVING CONDITIONAL STATEMENTS BY CONTINDICTION

$$\frac{P_{ROP}:}{P_{ROP}:} P \Rightarrow Q.$$

$$\frac{P_{ROP}:}{P_{ROP}:} Assume \sim (P_{P})Q, i.e. P_{N} \sim Q.$$

$$\vdots$$

$$\Rightarrow \Leftarrow$$

26. If a and b are positive real numbers, then $a + b \ge 2\sqrt{ab}$.

Proof. (CONTRADICTION) ASSUME a,b Positive REAL NUMBERS $\frac{1}{4}$ $a+b < 2\sqrt{ab}$.

Then $\sqrt{a}^2 - 2\sqrt{a}\sqrt{b} + \sqrt{b}^2 < 0$ That is, $(\sqrt{a} - \sqrt{b})^2 < 0$. => = > =

9. Suppose $a, b \in \mathbb{R}$. If a is rational and ab is irrational, then b is irrational.

PROOF: (CONTRADICTION) Assume $a \in \mathbb{Q}$ and $ab \notin \mathbb{Q}$ and $b \in \mathbb{Q}$.

BY DEFINITION, $a = \frac{1}{g}$ and $b = \frac{m}{n}$ For some $p, g, m, n \in \mathbb{Z}$.

Then $ab = \frac{1}{g} \cdot \frac{m}{n} = \frac{pm}{gn}$.

Since $pm, gn \in \mathbb{Z}$, We have $ab \in \mathbb{Q} = \infty$