\$2.7 Quarthers

Surface Set X= {x,, x2, x3,...}, i.e. {1,3,5,7,...}

OPEN SENSENCE P(X): X HAS THIS PARTICULAR PENERTY, i.e. X IS ODD.

STATEMENT: EVENT ELEMENT OF X HAS THIS PROPERTY

UDIVERSAL QUANTIFIER

STATEMENT: AT LEAST ONE OF THE GLENEWTS OF X HAS THE PROPERTY

THERE EXISTS A THERE IS A FOR SOME

FOR EACH

EXISTENSIAL QUANTIFIER

Y & 3 ARE QUANTIFIERS - THEY SPECIFY THE QUANTY OF THE VARIABLE THAT FULLOWS

<u>ex.</u> " Eveny integer multiple of IT is a solution to snox = 0."

Yne Z, sw(n) = 0.

VneZ, S(n) S(n): sis/nT)=0

ex. "There is a prime winder Greater Than 100.

IneN, (nis Pause) ~ (n > 100)

Inez, Pln), Gln)
Pln): n is Pruc
Gln): n > 100

Problem 3. Translate the following statements into symbolic logic. The universe of discourse is \mathbb{R} .

- (i) The identity element for addition is 0.
- (ii) Every real number has an additive inverse.
- (iii) Negative numbers do not have square roots.
- (iv) Every positive number has exactly two square roots.

Solution.

- (i) $\forall x \in \mathbb{R}, \ x + 0 = x.$
- (ii) $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ y + x = 0.$
- (iii) $\forall x \in \mathbb{R}, \ x < 0 \Rightarrow \sim (\exists y \in \mathbb{R}, \ y^2 = x).$
- $\text{(iv)} \ \forall x \in \mathbb{R}, \ x > 0 \Rightarrow \big(\exists y_1, y_2, \in \mathbb{R}, \ y_1^2 = y_2^2 = x \land y_1 \neq y_2\big) \land \ \sim \big(\exists z \in \mathbb{R}, \ z \neq y_1 \land z \neq y_2 \land z^2 = x\big).$

§ 2.8 MORE ON CONDITIONAL STATEMENTS

T(x): X IS A MULTIPLE OF 10 Sulface ofen septences F(x): X is a multiple of 5

 $T(x) \Rightarrow F(x)$ is true statement because $\forall x \in \mathbb{Z}$, $T(x) \Rightarrow F(x)$ $x = 30: T \Rightarrow T$

FROM CONSEXT.

 $\langle F(x) = \rangle T(x)$ is sometimes the, sometimes false \rightarrow ofen seidence

Whenever We have two over sensences about obsects $x \in X$

F(x) => T(x) is understoop to mean VXeX F(x) => T(x).

HENCE THIS IS A FALSE STATEMENT.

DET (NEW MORE GENERAL):

GIVED P.Q SIMEMENTS/OPEN SENTENCES (REGARDLESS)

P=>Q is a statement &

True IF IMPOSSIBLE FOR P TRUE WHEN Q FALSE,

FAISE IF AT LEAST ONE CASE ! TIME Q FAISE. / coupler example >

IF I HAS A LOCAL MINIMUM A a, THEN I'la = 0.

- FOR ALL FUNCTIONS OF A REAL VARIABLE

FALSE IF YOU CALL FIND A COUNTER EXAMPLE & \(\(\times \) = \(\times \)

IF I HAS A LOCAL MINIMUM AT a AND I'la\ EXISTS, THEN I'la\= 0 ex.

> - IMPOSSIBLE FOR & TO HAVE A LOCAL MIN AT OR WHEN PROBLEM f'(a) Exists & is DODZERO.

\$2.9 TRANSLATING ENGLISH TO STUBOUC LOGIC

e.g. GOLDBACH'S CONSECTURE:

EVERY EVEN INTEGER GREATER THAN 2 IS THE SUM OF 2 PRIME NUMBERS.

Fact 2.2 Suppose X is a set and Q(x) is a statement about x for each $x \in X$. The following statements mean the same thing:

$$\forall x \in X, Q(x)$$
$$(x \in X) \Rightarrow Q(x).$$

ex.

: FOR ANY POSITE NUMBER & THERE EXISTS A POSITIVE NUMBER S Such that |f(x)-L| < E whenever |x-a| < S.

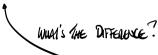
: VEDO, 3600, |x-a|(8 => 1f(x)-L) < &

ex. Prime NUMBER

THERE IS NO LANGEST : FOR EVERY PRIME DUMBER P, THERE IS A PRIME DUMBER LANGER THAN P.

7. There exists a real number a for which a + x = x for every real number x.

JaeR, VxeR, a+x=x.



VxeR, JaeR, a+x=x. X

EX. EVERYBOOY IN THE DOWN HAS A ROCHMANTE THEY DOW'T LIKE.

DEFINE SET $D: \{p: p \text{ lives in the doinn } \}$ OPEN SENTENCE R(x,y) = x and y are ROUMMIES OPEN SENTENCE L(x,y) = x likes y

VxeD, By, R(x,y) ~~ L(x,y)

Example 2.1.4. What do the following statements mean? Are they true or false? The universe of discourse in each case is \mathbb{N} , the set of all natural numbers.

- 1. $\forall x \exists y (x < y)$.
- 2. $\exists y \ \forall x (x < y)$.
- 3. $\exists x \ \forall y (x < y)$.
- 4. $\forall y \exists x (x < y)$.
- 5. $\exists x \exists y (x < y)$.
- 6. $\forall x \ \forall y (x < y)$.

& 2.10 NEGATING STATEMENTS

PROVIDE THAT P IS THE IS THE SAME AS PROVIDE AP IS FALSE (É VICE VERSA).

RECALL DE MORGAN'S LAWS: $\sim (P \wedge Q) = (\sim P) \vee (\sim Q)$ $\sim (P \vee Q) = (\sim P) \wedge (\sim Q)$

NEGATING QUANTIFIED STATEMENTS:

~ (\x \is X , P(x)): IT IS NOT THE CASE THAT FOR ALL X IN X , P(x) IS TRUE.

: P(x) is but the For some $x \in X$.

: JxeX, ~Plx).

~ $(\exists x \in X, \ell(x))$: It is not the case that there exists an $x \in X$ such that $\ell(x)$ is thus.

: P(x) is not the For ALL XEX.

: YxeX, ~ P(x)

$$(x)$$
 (x) (x)

EX. NEGALE: 3. For every prime number p, there is another prime number q with q > p.

NEGATIVES CONDITIONAL STATEMENTS

ex. Negate:
$$3^2 = 9 \Rightarrow \sqrt{9} = 3$$
 $T \Rightarrow T : T$

ex. Nebale:
$$(-3)^2 = 9 \Rightarrow \sqrt{9} = -3$$
 $T \Rightarrow F : F \emptyset$

ex. NEGALE:
$$x^2 = 9 \Rightarrow \sqrt{9} = x$$
, i.e. $\forall x \in \mathbb{R}$, $x^2 = 9 \Rightarrow \sqrt{9} = x$

ex. When does it means to say that
$$\lim_{x\to a} f(x) \neq L$$
?

PLEASE READ \$2.11-12