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Definition 12.6 For a set A, the identity function on A is the function
ig:A— A defined as i4(x) =x for every x € A.
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Definition 12.7 Given a relation R from A to B, the inverse relation
of R is the relation from B to A defined as R™! = {(y,x) : (x,y) € R}. In other
words, the inverse of R is the relation R~! obtained by interchanging the
elements in every ordered pair in R.
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flecace - Definition 12.1 Suppose A and B are sets. A function f from A to B
(denoted as f: A — B) is a relation f < A x B from A to B, satisfying the
property that for each a € A the relation f contains exactly one ordered
pair of form (a,b). The statement (a,b) € f is abbreviated f(a) =b.
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Theorem 12.3 Let f: A — B be a function. Then £ is bijective if and only
if the inverse relation £~ is a function from B to A.

Definition 12.8 If f: A — B is bijective then its inverse is the function
f~1:B— A. The functions f and ! obey the equations f 1o f =i4 and
fof'=ip.
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4, The function f:R — (0,00) defined as f(x) = e’ 1 ig bijective. Find its inverse.
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7. Show that the function f : R? — R? defined by the formula f(x,y) = (x%2 + 1)y,x3) is
bijective. Then find its inverse.
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Definition 12.9 Suppose f: A — B is a function.
1. If X c A, the image of X is the set f(X)={f(x):xe X} <B.
2. IfY B, the preimage of Y is the set /" 1(Y)={xeA: f(x)e Y} cA.

Example 12.13 Let f:{s,t,u,v,w,x,y,2} — {0,1,2,3,4,5,6,7,8,9} be
f={(s,4),(,8),®,8),(v,1),w,2),(x,4),(y,6),(z,4)}.

This f is neither injective nor surjective, so it certainly is not invertible. Be
sure you understand the following statements.

1. f({s t,u,z}) ={8,4} 5. f1({4}) ={s,x,2}

2. f(sxzh) = {4 6. ({49} ={s,x,2}

3. f({s,v,w,y})=1{1,2,4,6} 7. {9} =9

4. f(®)=9 8. f1({1,4,8}) = {s,t,u,v,x,2}

It is important to realize that the X and Y in Definition 12.9 are subsets
(not elements!) of A and B. In Example 12.13 we had f~1({4}) = {s,x,2},
while £71(4) is meaningless because the inverse function f~! does not exist.
And there is a subtle difference between f({s}) = {4} and f(s) = 4. Be careful.

Example 12.14 Consider the function f :R — R defined as f(x) = x%. Note
that £({0,1,2}) = {0,1,4} and £~1({0,1,4}) = {-2,-1,0,1,2}. This shows that
F U(f(X)) #X in general.

ex 10. Given f:A — B and subsets Y,Z < B, prove f XY nZ) = fXY)nf~X2).
11. Given f:A — B and subsets Y,Z B, prove f LAY uZ)=f"1Y)uf42).
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