Polynomials

John Adamski

January 10, 2017

Monomials

A monomial is a product of one or more numbers and/or letters raised to positive integer exponents. The following are all monomials.

$$8x, \quad -3x^2y, \quad \frac{5}{7}xy^3z^5$$

Monomials can be multiplied and/or divided using the commutative and associate properties of multiplication along with the familiar rules of exponents.

Practice multiplying monomials

1.
$$(4x^3y^2)(-6xy^4)$$

3.
$$(3r^3s^7t^4)(-4r^2s^3t)(-4r^2s^6t^3)^2$$

$$2. \ \ (-\frac{2}{3}xy^2)(-\frac{9}{8}yz^3)$$

Practice dividing monomials

1.
$$\frac{8x^7y^6}{2xy^4}$$

3.
$$\left(\frac{(2a^{-1}b^2c^{-3})^{-4}}{(4a^4b^{-5}c^6)^2}\right)^{-1}$$

$$2. \ \frac{-54xy^5z^6}{(3y^2z^3)^2}$$

4.
$$\left(\frac{\left(\frac{1}{3}p^5q^2r^{-3}\right)^{-2}}{\left(\frac{3}{4}pqr^{-2}\right)^3}\right)^{-2}$$

Polynomials

A *polynomial* is a sum of monomials. In this context, the monomials that make up a polynomial are called *terms* of a polynomial. Polynomials can be multiplied together using the distributive rule along with the familiar rules of exponents.

Practice multiplying polynomials

1.
$$-3x^2(-4x^2+5x-1)$$

3.
$$(3x+4x^2)(2y-3y^2)$$

$$2. \ 36x^4yz^2\left(\frac{5}{6}y^3 - \frac{1}{3}xz^4 + \frac{7}{12}\right)$$

Remark. When multiplying a polynomial with m terms by a polynomial with n terms, mn multiplications are involved. When multiplying a binomial by a binomial, the acronym F.O.I.L. may help you remember the four multiplications involved (First Outer Inner Last).

A polynomial can be divided by a monomial simply by breaking up the fraction into a sum of monomials divided by the same monomial.

Practice dividing polynomials by monomials

1.
$$\frac{6a^3b^4x^2 + 10a^3b^4x - 4a^3b^4}{2a^3b^4}$$

3.
$$\frac{2b^{-1}d^{-1} - 2b^{-1}c^{-1} + 3a^{-1}d^{-1} - 3a^{-1}c^{-1}}{a^{-1}b^{-1}c^{-1}d^{-1}}$$

$$2. \ \frac{7x^8y^7 - 7x^7y^8 - 42x^6y^9}{7x^6y^7}$$

4.
$$\frac{\frac{2}{3}xyz + 5x^5y^4z^3 - \frac{1}{4}xyz}{5xyz}$$