Exponents

John Adamski

January 9, 2017

Definition of Integer Exponents

When n is a positive integer, by definition,

$$a^n = a \cdot a \cdot \ldots \cdot a \ (n \text{ times}).$$

Notice that when n is increased by one, the result is multiplied by a. Similarly, when n is decreased by one, the result is divided by a, i.e. multiplied by 1/a. Thus, we can extend the definition of exponents very naturally to 0 and to negative integers as well.

$$a^0 = 1$$
$$a^{-n} = \frac{1}{a^n}$$

Note, in particular, that $a^{-1}=\frac{1}{a}$ and $1/a^{-1}=a$. Practice: p. 428 #67-90

Rules of Exponents

The following properties of exponents follow from the definitions above.

1.
$$a^m a^n = a^{m+n}$$

$$2. \ \frac{a^m}{a^n} = a^{m-n}$$

$$3. (ab)^n = a^n b^n$$

$$4. \ \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

5.
$$(a^m)^n = a^{mn}$$

$$6. \left(\frac{x^a y^b}{z^c}\right)^n = \frac{x^{an} y^{bn}}{z^{cn}}$$

The last property listed above is really just a summary of all previous rules, and so is called The General Rule for Exponents (by our textbook).

Practice: p. 430-431