Vector Calc Review

John Adamski

May 23, 2017

1 Line Integrals

Given a differentiable curve C parametrized by

$$\vec{r}(t) = \langle x(t), y(t), z(t) \rangle, \quad a \leqslant t \leqslant b$$

the arc length of C is

$$\int_C ds = \int_a^b |\vec{r'}(t)| dt.$$

Given a scalar function (density) f(x, y, z), the line integral of f along C (mass) is

$$\int_C f \ ds = \int_a^b f(\vec{r}(t)) |\vec{r'}(t)| \ dt.$$

Given a vector (force) field $\vec{F}(x, y, z)$ and an orientation (direction) for C, the line integral of \vec{F} along C (work) is

$$\int_{C} \vec{F} \cdot \vec{T} \, ds = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \frac{\vec{r}'(t)}{|\vec{r}'(t)|} |\vec{r}'(t)| \, dt = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt = \int_{C} \vec{F} \cdot d\vec{r}. \tag{1}$$

Remark. Note that

$$\vec{r}'(t) dt = \left\langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right\rangle dt = \langle dx, dy, dz \rangle.$$

Thus, letting $\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$, equation (1) can also be written

$$\int_C P dx + Q dy + R dz.$$

2 Surface Integrals

Given a surface S parametrized by

$$\vec{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle, \quad (u,v) \in D$$

the surface area of S is

$$\iint\limits_{S} dS = \iint\limits_{D} |\vec{r}_{u} \times \vec{r}_{v}| dA.$$

In the special case that S is the graph z = g(x, y) then a simple parametrization of S is

$$\vec{r}(x,y) = \langle x, y, g(x,y) \rangle, \quad (x,y) \in D$$

and its surface area is

$$\iint\limits_{S} dS = \iint\limits_{D} |\langle -g_x(x,y), -g_y(x,y), 1 \rangle| \ dA = \iint\limits_{D} \sqrt{g_x^2 + g_y^2 + 1} \ dA.$$

Given a scalar function (density) f(x, y, z), the surface integral of f over S (mass) is

$$\iint\limits_{S} f \ dS = \iint\limits_{D} f(\vec{r}(u,v)) |\vec{r}_{u} \times \vec{r}_{v}| \ dA.$$

Given a vector (force) field $\vec{F}(x, y, z)$ and an orientation for S, the surface integral of \vec{F} over S (flux) is

$$\iint_{S} \vec{F} \cdot \vec{n} \, dS = \iint_{D} \vec{F}(\vec{r}(u,v)) \cdot \frac{\pm \vec{r}_{u} \times \vec{r}_{v}}{|\vec{r}_{u} \times \vec{r}_{v}|} |\vec{r}_{u} \times \vec{r}_{v}| \, dA = \iint_{D} \vec{F}(\vec{r}(u,v)) \cdot (\pm \vec{r}_{u} \times \vec{r}_{v}) \, dA. \tag{2}$$

The \pm is determined by the orientation of the surface S.

Remark. Letting $d\vec{S} = \vec{n} dS$, equation (2) can also be written

$$\iint\limits_{S} \vec{F} \cdot d\vec{S}.$$

3 Theorems

Theorem 3.1 (Fundamental Theorem for Line Integrals). Let C be a smooth curve given by the vector function $\vec{r}(t)$, $a \leq t \leq b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_{C} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)).$$

Theorem 3.2 (Conervative vector field). Given a vector field \vec{F} , there exists a scalar function f such that $\vec{F} = \nabla f$ if and only if \vec{F} is conservative. In two dimensions, $\vec{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ is conservative if

1.
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
, and

2. The domain of \vec{F} is simply connected. That is, the domain of \vec{F} has "no holes".

In three dimensions, $\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$ is conservative if

- 1. $\operatorname{curl} \vec{F} = \vec{0}$, and
- 2. The domain of \vec{F} is \mathbb{R}^3 .

Thus the content of this theorem is to give a way of knowing when a vector field \vec{F} has a potential function f.

Theorem 3.3 (Green's Theorem). Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\oint\limits_C P \ dx + Q \ dy = \iint\limits_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dA.$$

Theorem 3.4 (Stokes' Theorem). Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \vec{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S}.$$

Theorem 3.5 (Divergence Theorem). Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let \vec{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$\iint\limits_{S} \vec{F} \cdot d\vec{S} = \iiint\limits_{E} \operatorname{div} \vec{F} \ dV.$$