Math 203 Calculus III

- 1. (8 points) Find equations of the spheres with center (1, -2, 3) that touch
 - (a) the plane x = -1;

(b) the origin.

2. (6 points) Let **a**, **b**, **c**, and **d** be vectors. State whether each of the following expressions is meaningful or not. If yes, state whether the result is a scalar or a vector.

(a)
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

(b)
$$(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$$

(c)
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$$

(d)
$$\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c})$$

(e)
$$(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \cdot \mathbf{d})$$

(f)
$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d})$$

3. (8 points) Consider the two planes P_1 and P_2 .

$$P_1: 2x - 4y + 5z = 2$$

 $P_2: 5x + 2y - 4z = 5$

(a) Find the angle at which the two planes intersect.

(b) Give either a vector equation or parametric equations for the line of intersection of P_1 and P_2 . Hint: It is easy to see that one point on the line of intersection is (1,0,0).

4. (4 points) Give a vector equation and parametric equations for the line segment from (9, -2, 5) to (7, 3, -6).

5. (8 points) Suppose a line l is parametrized by the equations

$$x = 4 + t,$$
 $y = 3 - 2t,$ $z = t - 7,$

and a plane P is described by the equation

$$2x - 6y + z = 10.$$

Give parametric equations for the line through the point (5, 8, 5) that is parallel to the plane P and perpendicular to the line l.

6. (8 points)	Give an equation	for the plane that	contains the three	points (2.	1.2). (9.1.7	7) and (6, 4, 6).

7. (4 points) Sketch the domain of the function $f(x,y) = \arcsin(x^2 + y^2 - 3)$.

8. (10 points) Let C be the space curve described by the vector-valued function

$$\mathbf{r}(t) = \langle \cos t, 3\sin t, t \rangle, \qquad 0 \le t \le 6\pi$$

(a) Give parametric equations for the tangent line to C at the point $(0,3,5\pi/2)$.

(b) Sketch the curve C and the tangent line from part (a) below.

9. (8 points) (a) Show that the following limit does not exist.

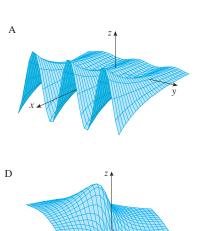
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + xy + y^2}$$

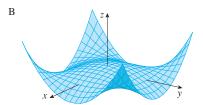
(b) Show that the following limit does exist, and find the limit.

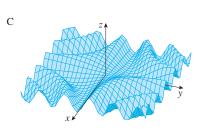
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2 + y^2}$$

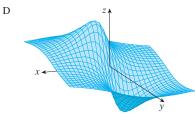
10. (6 points) Match each of the following equations with its graph (labeled A-F) and its contour map (labeled I-VI).

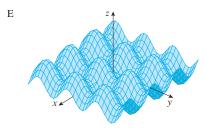
(a)
$$z = \sin(xy)$$


(c)
$$z = \sin(x - y)$$


(e)
$$z = (1 - x^2)(1 - y^2)$$


(b)
$$z = e^x \cos y$$


(d)
$$z = \sin(x) - \sin(y)$$


(f)
$$z = \frac{x - y}{1 + x^2 + y^2}$$

