Please show all work and **box your final answers**. If you need more room, you may use the backs of the pages. Calculators are not allowed. Good luck!

1. Suppose the position of a particle at time t is given by the vector valued function

$$\vec{r}(t) = \langle t \cos t, t \sin t, t^2 \rangle, \quad -\infty < t < \infty.$$

(a) (4 points) Find two different times t_1 and t_2 when the particle is at the point $P(0, \frac{\pi}{2}, \frac{\pi^2}{4})$.

(b) (4 points) Show that the particle is traveling in different directions each time it passes through the point P.

_	G .1 .1 .	1 5	1.5		. 1 6 11 .	
2.	Consider the two	planes P_1	and P_2	given by	the following	equations.

$$x + 3z = 2y + 4 \tag{P_1}$$

$$3y = 2z + 10 \tag{P_1}$$

(a) (4 points) Are the planes P_1 and P_2 parallel, perpendicular, or neither? Show the calculation that supports your answer.

(b) (4 points) Give parametric equations for the line through the point (1, 2, -1) that is parallel to both planes P_1 and P_2 .

(c) (4 points) Find the point at which the line you found in part (b) intersects the xz-plane.

3. (4 points) Show that the following limit does not exist.

$$\lim_{(x,y)\to(0,0)}\frac{(x^2-y^2)^2}{(x^2+y^2)^2}$$

4. (4 points) Suppose

$$w = xy + yz + zx$$

and

$$x = r\cos\theta, \quad y = r\sin\theta, \quad z = r\theta$$

Find
$$\frac{\partial w}{\partial \theta}$$
 when $r=2$ and $\theta=\frac{\pi}{2}$.

- 5. Let $f(x, y, z) = x^2 y^3 + e^{x+z} 2y \sin z$.
 - (a) (4 points) Find the directional derivative of f at P(0,1,0) in the direction toward the point Q(3,5,-12), i.e. in the direction of the line segment from P to Q.

(b) (4 points) Find an equation of the tangent plane to the level surface f(x, y, z) = 1 at the point P(0, 1, 0).

6. (4 points) Find the linear approximation to the function $f(x,y) = \tan^{-1}(xy^2)$ at the point $(1,1,\frac{\pi}{4})$ and use it to approximate f(0.9,1.1).

7. (4 points) Find $\frac{\partial z}{\partial y}$ when z is defined to be a function of x and y implicitly by the equation

$$yz + x \ln y = z^2.$$

8. (4 points) Write a poem about a math topic we've discussed in class. For example, here is a haiku about two different ways to multiply vectors in \mathbb{R}^n .

Dot product, scalar. Cross product, vector. Aha! Two different outputs.