Math 203-LL. Extra Credit #1

John Adamski

Due: Thursday, October 30th

Each of the following problems is worth 5 bonus points on Quiz 2.

Problem 1

Give an example of a function of one variable f(x) such that for some real number $a \in \mathbb{R}$

- (a) f is continuous at a,
- (b) f is differentiable at a, but
- (c) f' is not continuous at a.

To show parts (a), (b), and (c) you must use the definitions of *continuous* and *differentiable* which use limits.

Problem 2

Give an example of a function of two variable f(x,y) such that for some point $(a,b)\in\mathbb{R}^2$

- (a) f is continuous at (a, b),
- (b) $f_x(a,b)$ and $f_y(a,b)$ exist, but
- (c) f_x and f_y are not both continuous at (a, b).

To show parts (a), (b), and (c) you must use the definitions of *continuous* and *differentiable* which use limits.