9.2 EXERCISES

l-2 Find dy/dx.

1. $x = t - t^3$, y = 2 - 5t **2.** $x = te^t$, $y = t + e^t$

3–6 Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter.

3.
$$x = t^4 + 1$$
, $y = t^3 + t$; $t = -1$

4.
$$x = 2t^2 + 1$$
, $y = \frac{1}{3}t^3 - t$; $t = 3$

5.
$$x = e^{\sqrt{t}}, \quad y = t - \ln t^2; \quad t = 1$$

6. $x = \cos \theta + \sin 2\theta$, $y = \sin \theta + \cos 2\theta$; $\theta = 0$

7. Find an equation of the tangent to the curve $x = e^t$, $y = (t - 1)^2$ at the point (1, 1) by two methods: (a) without eliminating the parameter and (b) by first eliminating the parameter.

8. Find equations of the tangents to the curve $x = \sin t$, $y = \sin(t + \sin t)$ at the origin. Then graph the curve and the tangents.

9–12 Find dy/dx and d^2y/dx^2 . For which values of t is the curve concave upward?

$$9. x = 4 + t^2, y = t^2 + t^3$$

10.
$$x = t^3 - 12t$$
, $y = t^2 - 1$

11.
$$x = t - e^t$$
, $y = t + e^{-t}$

12. $x = t + \ln t$, $y = t - \ln t$

13–16 • Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work.

13.
$$x = 10 - t^2$$
, $y = t^3 - 12t$

14.
$$x = 2t^3 + 3t^2 - 12t$$
, $y = 2t^3 + 3t^2 + 1$

15.
$$x = 2\cos\theta$$
, $y = \sin 2\theta$

16. $x = \cos 3\theta$, $y = 2\sin \theta$

17. Use a graph to estimate the coordinates of the leftmost point on the curve $x = t^4 - t^2$, $y = t + \ln t$. Then use calculus to find the exact coordinates.

18. Try to estimate the coordinates of the highest point and the leftmost point on the curve $x = te^t$, $y = te^{-t}$. Then find the exact coordinates. What are the asymptotes of this curve?

19-20 • Graph the curve in a viewing rectangle that displays all the important aspects of the curve.

19.
$$x = t^4 - 2t^3 - 2t^2$$
, $y = t^3 - t$

20. $x = t^4 + 4t^3 - 8t^2$, $y = 2t^2 - t$

21. Show that the curve $x = \cos t$, $y = \sin t \cos t$ has two tangents at (0, 0) and find their equations. Sketch the curve.

22. At what point does the curve $x = 1 - 2\cos^2 t$, $y = (\tan t)(1 - 2\cos^2 t)$ cross itself? Find the equations of both tangents at that point.

23. (a) Find the slope of the tangent line to the trochoid $x = r\theta - d\sin\theta$, $y = r - d\cos\theta$ in terms of θ . (See Exercise 34 in Section 9.1.)

(b) Show that if d < r, then the trochoid does not have a vertical tangent.

24. (a) Find the slope of the tangent to the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ in terms of θ .

(b) At what points is the tangent horizontal or vertical?

(c) At what points does the tangent have slope 1 or -1?

25. At what points on the curve $x = t^3 + 4t$, $y = 6t^2$ is the tangent parallel to the line with equations x = -7t, y = 12t - 5?

26. Find equations of the tangents to the curve $x = 3t^2 + 1$, $y = 2t^3 + 1$ that pass through the point (4, 3).

27. Use the parametric equations of an ellipse, $x = a \cos \theta$, $y = b \sin \theta$, $0 \le \theta \le 2\pi$, to find the area that it encloses.

28. Find the area bounded by the curve x = t - 1/t, y = t + 1/t and the line y = 2.5.

29. Find the area bounded by the curve $x = \cos t$, $y = e^t$, $0 \le t \le \pi/2$, and the lines y = 1 and x = 0.

30. Find the area of the region enclosed by the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$.

31. Find the area under one arch of the trochoid of Exercise 34 in Section 9.1 for the case d < r.

32. Let \mathcal{R} be the region enclosed by the loop of the curve in Example 1.

(a) Find the area of \Re .

(b) If \Re is rotated about the *x*-axis, find the volume of the resulting solid.

(c) Find the centroid of \Re .

33–36 • Set up, but do not evaluate, an integral that represents the length of the curve.

33. $x = t - t^2$, $y = \frac{4}{3}t^{3/2}$, $1 \le t \le 2$

34. $x = 1 + e^t$, $y = t^2$, $-3 \le t \le 3$

35. $x = t + \cos t$, $y = t - \sin t$, $0 \le t \le 2\pi$

36.
$$x = \ln t$$
, $y = \sqrt{t+1}$, $1 \le t \le 5$

.

37–40 ■ Find the length of the curve.

37.
$$x = 1 + 3t^2$$
, $y = 4 + 2t^3$, $0 \le t \le 1$

38.
$$x = a(\cos \theta + \theta \sin \theta), \quad y = a(\sin \theta - \theta \cos \theta), \\ 0 \le \theta \le \pi$$

39.
$$x = \frac{t}{1+t}$$
, $y = \ln(1+t)$, $0 \le t \le 2$

40.
$$x = e^t + e^{-t}$$
, $y = 5 - 2t$, $0 \le t \le 3$

41-43 • Graph the curve and find its length.

41.
$$x = e^t \cos t$$
, $y = e^t \sin t$, $0 \le t \le \pi$

42.
$$x = \cos t + \ln(\tan \frac{1}{2}t)$$
, $y = \sin t$, $\pi/4 \le t \le 3\pi/4$

43.
$$x = e^t - t$$
, $y = 4e^{t/2}$, $-8 \le t \le 3$

.

44. Find the length of the loop of the curve $x = 3t - t^3$, $y = 3t^2$.

45. Use Simpson's Rule with
$$n = 6$$
 to estimate the length of the curve $x = t - e^t$, $y = t + e^t$, $-6 \le t \le 6$.

46. In Exercise 36 in Section 9.1 you were asked to derive the parametric equations
$$x = 2a \cot \theta$$
, $y = 2a \sin^2 \theta$ for the curve called the witch of Maria Agnesi. Use Simpson's Rule with $n = 4$ to estimate the length of the arc of this curve given by $\pi/4 \le \theta \le \pi/2$.

47–48 • Find the distance traveled by a particle with position (x, y) as t varies in the given time interval. Compare with the length of the curve.

47.
$$x = \sin^2 t$$
, $y = \cos^2 t$, $0 \le t \le 3\pi$

48.
$$x = \cos^2 t$$
, $y = \cos t$, $0 \le t \le 4\pi$

.

49. Show that the total length of the ellipse $x = a \sin \theta$, $y = b \cos \theta$, a > b > 0, is

$$L = 4a \int_0^{\pi/2} \sqrt{1 - e^2 \sin^2 \theta} \ d\theta$$

where *e* is the eccentricity of the ellipse (e = c/a), where $c = \sqrt{a^2 - b^2}$.

50. Find the total length of the astroid
$$x = a \cos^3 \theta$$
, $y = a \sin^3 \theta$, where $a > 0$.

[45] **51.** (a) Graph the **epitrochoid** with equations

$$x = 11\cos t - 4\cos(11t/2)$$

$$y = 11 \sin t - 4 \sin(11t/2)$$

What parameter interval gives the complete curve?

(b) Use your CAS to find the approximate length of this curve.

52. A curve called **Cornu's spiral** is defined by the parametric equations

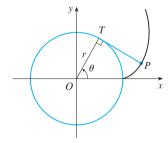
$$x = C(t) = \int_0^t \cos(\pi u^2/2) du$$

$$y = S(t) = \int_0^t \sin(\pi u^2/2) du$$

where *C* and *S* are the Fresnel functions that were introduced in Chapter 4.

- (a) Graph this curve. What happens as $t \to \infty$ and as $t \to -\infty$?
- (b) Find the length of Cornu's spiral from the origin to the point with parameter value *t*.
- **53.** A string is wound around a circle and then unwound while being held taut. The curve traced by the point P at the end of the string is called the **involute** of the circle. If the circle has radius r and center O and the initial position of P is (r, 0), and if the parameter θ is chosen as in the figure, show that parametric equations of the involute are

$$x = r(\cos \theta + \theta \sin \theta)$$
 $y = r(\sin \theta - \theta \cos \theta)$



54. A cow is tied to a silo with radius *r* by a rope just long enough to reach the opposite side of the silo. Find the area available for grazing by the cow.

