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Although it is possible to eliminate the parameter 6 from Equations 1, the result-

ing Cartesian equation in x and y is very complicated and not as convenient to work
with as the parametric equations. [

One of the first people to study the cycloid was Galileo, who proposed that bridges
be built in the shape of cycloids and who tried to find the area under one arch of a
cycloid. Later this curve arose in connection with the brachistochrone problem: Find

cycloid

the curve along which a particle will slide in the shortest time (under the influence of

gravity) from a point A to a lower point B not directly beneath A. The Swiss math-

FIGURE 14

ematician John Bernoulli, who posed this problem in 1696, showed that among all
possible curves that join A to B, as in Figure 14, the particle will take the least time

sliding from A to B if the curve is part of an inverted arch of a cycloid.

FIGURE 15

9.1 | EXERCISES

The Dutch physicist Huygens had already shown that the cycloid is also the sol-
ution to the tautochrone problem, that is, no matter where a particle P is placed
on an inverted cycloid, it takes the same time to slide to the bottom (see Figure 15).
Huygens proposed that pendulum clocks (which he invented) should swing in cycloi-
dal arcs because then the pendulum takes the same time to make a complete oscilla-
tion whether it swings through a wide or a small arc.

I-4 = Sketch the curve by using the parametric equations to
plot points. Indicate with an arrow the direction in which the
curve is traced as ¢ increases.

Lx=1++i, y=1"—41, 0<t<5
2. x=2cost, y=t—cost, 0<t=<2m
3. x =15sint, y=lz, —-—T=<t<7

4. x=e¢ ' +1t, y=e' —t, -2=<t=<2

5-8 =

(a) Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the
curve is traced as ¢ increases.

(b) Eliminate the parameter to find a Cartesian equation of
the curve.

5. x=3t—-5, y=2t+1 6. x =1+ 3¢, y:2—z‘2

7.x=\ﬂ, y=1-—1 8. x =12 y=l3

| | | | | | | | |} | |} |} |} |} |} | |

9-14 =

(a) Eliminate the parameter to find a Cartesian equation of the
curve.

(b) Sketch the curve and indicate with an arrow the direction in
which the curve is traced as the parameter increases.

9. x=sinfh, y=cosh, 0O
10. x=4cos, y=135sinf, —w/2<6<m/2

Il. x=sint, y=csct, 0<t<m/2

12. x=secH, y=tanf, —7w/2<60<m/2
13. x=1¢% y=t+1

14. x=1+cosf, y=2cosf— 1

15-18 = Describe the motion of a particle with position (x, y)
as ¢ varies in the given interval.

I5. x=3+2cost, y=1+2sint, w/2<t<3mw/2

16. x =2sint, y=4+cost, 0<r1<37/2

I7. x=15sint, y=2cost, —mwm<t=<>5mw
18. x =sint, y=cos’t, —2wm<t<2mw
n | | | | | n | | | | | | | | | |

19-21 = Use the graphs of x = f(#) and y = g(7) to sketch the
parametric curve x = f(7), y = ¢(¢). Indicate with arrows the

direction in which the curve is traced as ¢ increases.
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22. Match the parametric equations with the graphs labeled
I-VI. Give reasons for your choices. (Do not use a graphing
device.)
(ayx=1'—2t, y=t—1t
byx=—1 y=2-1¢
(c) x =sin3¢t, y = sin 4t
(d)x=1t+sin2t, y=1t+sin3t
(e) x =sin(z + sint), y = cos(r + cos 1)
(f) x =cost, y = sin(r + sin 57)
1 y II\/V\Y ‘ 1 y
0 X U\A/O X 0 x
v v y
0 X
0 X

i 23.
i 24.

25.

26.

27.

Graph the curve x = y — 3y® + y°.

Graph the curves y = x’ and x = y(y — 1)* and find their
points of intersection correct to one decimal place.
(a) Show that the parametric equations

x=x; + (x2 — x))t y=y + (y2 =yt

where 0 < r < 1, describe the line segment that joins
the points Pi(x1, y1) and Py(x2, y2).

(b) Find parametric equations to represent the line segment
from (=2, 7) to (3, —1).

Use a graphing device and the result of Exercise 25(a) to

draw the triangle with vertices A (1, 1), B(4, 2), and C(1, 5).

Find parametric equations for the path of a particle that
moves along the circle x> + (y — 1)> = 4 in the manner
described.

(a) Once around clockwise, starting at (2, 1)

(b) Three times around counterclockwise, starting at (2, 1)
(¢) Halfway around counterclockwise, starting at (0, 3)

. (a) Find parametric equations for the ellipse

x*/a* + y*b* = 1. [Hint: Modify the equations of
the circle in Example 2.]
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(b) Use these parametric equations to graph the ellipse
whena =3 and b = 1, 2, 4, and 8.
(c) How does the shape of the ellipse change as b varies?

9 29-30 = Usea graphing calculator or computer to reproduce
the picture.

29.

y 30.

21

31-32 = Compare the curves represented by the parametric
equations. How do they differ?

31

32.

33.
34.

35.

@x=1¢t, y=1

by x=1% y=1*

) x=e¥ y=e?*
@x=t y= 172

(b) x =cost, y=sec’t
C)x=¢', y=e?*

Derive Equations 1 for the case /2 < 6 < .

Let P be a point at a distance d from the center of a circle
of radius r. The curve traced out by P as the circle rolls
along a straight line is called a trochoid. (Think of the
motion of a point on a spoke of a bicycle wheel.) The
cycloid is the special case of a trochoid with d = r. Using
the same parameter 6 as for the cycloid and assuming the
line is the x-axis and 6 = 0 when P is at one of its lowest
points, show that parametric equations of the trochoid are
x=r60 —dsinf y=r—dcosf
Sketch the trochoid for the cases d < rand d > r.

If a and b are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point
P in the figure, using the angle 6 as the parameter. Then
eliminate the parameter and identify the curve.
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36.

37.

38.
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A curve, called a witch of Maria Agnesi, consists of all
possible positions of the point P in the figure. Show that
parametric equations for this curve can be written as

x=2acotf y=2asin’f
Sketch the curve.

y

y=2a c

o
A P
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o Il

o X

Suppose that the position of one particle at time ¢ is given
by

x, =3sint yir =2cost 0sr=<

and the position of a second particle is given by

X, = —3 + cost y2=1+sint O0st=2w

(a) Graph the paths of both particles. How many points of
intersection are there?

(b) Are any of these points of intersection collision points?
In other words, are the particles ever at the same place
at the same time? If so, find the collision points.

(c) Describe what happens if the path of the second particle
is given by

X, =3+ cost y2=1+sint 0<t=<2m

If a projectile is fired with an initial velocity of v, meters
per second at an angle « above the horizontal and air resis-

9.2

A 39.

/- 40

A a2.

tance is assumed to be negligible, then its position after
t seconds is given by the parametric equations

x = (vo cos a)t y = (vosin @)t — 3g1>

where ¢ is the acceleration due to gravity (9.8 m/s?).

(a) If a gun is fired with @ = 30° and vy = 500 m/s, when
will the bullet hit the ground? How far from the gun will
it hit the ground? What is the maximum height reached
by the bullet?

(b) Use a graphing device to check your answers to part (a).
Then graph the path of the projectile for several other
values of the angle « to see where it hits the ground.
Summarize your findings.

(c) Show that the path is parabolic by eliminating the
parameter.

Investigate the family of curves defined by the parametric
equations x = %, y = t* — ct. How does the shape change
as ¢ increases? Illustrate by graphing several members of the
family.

. The swallowtail catastrophe curves are defined by the

parametric equations x = 2ct — 417,y = —ct* + 3t
Graph several of these curves. What features do the curves
have in common? How do they change when ¢ increases?

. The curves with equations x = asinnt, y = bcost are

called Lissajous figures. Investigate how these curves vary
when a, b, and n vary. (Take n to be a positive integer.)

Investigate the family of curves defined by the parametric
equations

x=sint(c — sin?) y =cost(c — sinr)

How does the shape change as ¢ changes? In particular, you
should identify the transitional values of ¢ for which the
basic shape of the curve changes.

CALCULUS WITH PARAMETRIC CURVES

Having seen how to represent curves by parametric equations, we now apply the meth-
ods of calculus to these parametric curves. In particular, we solve problems involving
tangents, areas, and arc length.

TANGENTS

Suppose f and g are differentiable functions and we want to find the tangent line at a
point on the parametric curve x = f(z), y = ¢(t) where y is also a differentiable func-
tion of x. Then the Chain Rule gives

dy _dy  dx
dt dx dt



