

FIGURE 14

FIGURE 15

Although it is possible to eliminate the parameter θ from Equations 1, the resulting Cartesian equation in x and y is very complicated and not as convenient to work with as the parametric equations.

One of the first people to study the cycloid was Galileo, who proposed that bridges be built in the shape of cycloids and who tried to find the area under one arch of a cycloid. Later this curve arose in connection with the brachistochrone problem: Find the curve along which a particle will slide in the shortest time (under the influence of gravity) from a point A to a lower point B not directly beneath A. The Swiss mathematician John Bernoulli, who posed this problem in 1696, showed that among all possible curves that join A to B, as in Figure 14, the particle will take the least time sliding from A to B if the curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solution to the tautochrone problem; that is, no matter where a particle P is placed on an inverted cycloid, it takes the same time to slide to the bottom (see Figure 15). Huygens proposed that pendulum clocks (which he invented) should swing in cycloidal arcs because then the pendulum takes the same time to make a complete oscillation whether it swings through a wide or a small arc.

9.1 **EXERCISES**

1–4 ■ Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.

1.
$$x = 1 + \sqrt{t}$$
, $y = t^2 - 4t$, $0 \le t \le 5$

2.
$$x = 2 \cos t$$
, $y = t - \cos t$, $0 \le t \le 2\pi$

3.
$$x = 5 \sin t$$
, $y = t^2$, $-\pi \le t \le \pi$

4.
$$x = e^{-t} + t$$
, $y = e^{t} - t$, $-2 \le t \le 2$

- (a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.
- (b) Eliminate the parameter to find a Cartesian equation of the curve.

5.
$$x = 3t - 5$$
, $y = 2t +$

5.
$$x = 3t - 5$$
, $y = 2t + 1$ **6.** $x = 1 + 3t$, $y = 2 - t^2$

7.
$$x = \sqrt{t}, \quad y = 1 - t$$

7.
$$x = \sqrt{t}$$
, $y = 1 - t$ 8. $x = t^2$, $y = t^3$

- (a) Eliminate the parameter to find a Cartesian equation of the curve.
- (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

9.
$$x = \sin \theta$$
, $y = \cos \theta$, $0 \le \theta \le \pi$

10.
$$x = 4 \cos \theta$$
, $y = 5 \sin \theta$, $-\pi/2 \le \theta \le \pi/2$

11.
$$x = \sin t$$
, $y = \csc t$, $0 < t < \pi/2$

12.
$$x = \sec \theta$$
, $y = \tan \theta$, $-\pi/2 < \theta < \pi/2$

13.
$$x = e^{2t}$$
, $y = t + 1$

14.
$$x = 1 + \cos \theta$$
, $y = 2 \cos \theta - 1$

15–18 • Describe the motion of a particle with position (x, y)as t varies in the given interval.

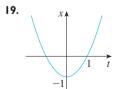
15.
$$x = 3 + 2 \cos t$$
, $y = 1 + 2 \sin t$, $\pi/2 \le t \le 3\pi/2$

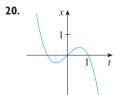
16.
$$x = 2 \sin t$$
, $y = 4 + \cos t$, $0 \le t \le 3\pi/2$

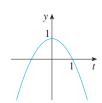
17.
$$x = 5 \sin t$$
, $y = 2 \cos t$, $-\pi \le t \le 5\pi$

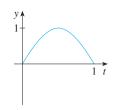
18.
$$x = \sin t$$
, $y = \cos^2 t$, $-2\pi \le t \le 2\pi$

19–21 • Use the graphs of x = f(t) and y = g(t) to sketch the parametric curve x = f(t), y = g(t). Indicate with arrows the direction in which the curve is traced as t increases.

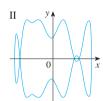


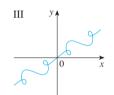


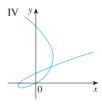


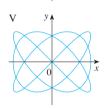


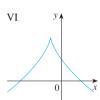
- 22. Match the parametric equations with the graphs labeled I-VI. Give reasons for your choices. (Do not use a graphing device.)
 - (a) $x = t^3 2t$, $y = t^2 t$
 - (b) $x = t^3 1$, $y = 2 t^2$
 - (c) $x = \sin 3t$, $y = \sin 4t$
 - (d) $x = t + \sin 2t$, $y = t + \sin 3t$
 - (e) $x = \sin(t + \sin t)$, $y = \cos(t + \cos t)$
 - (f) $x = \cos t$, $y = \sin(t + \sin 5t)$











- \nearrow 23. Graph the curve $x = y 3y^3 + y^5$.
- **24.** Graph the curves $y = x^5$ and $x = y(y 1)^2$ and find their points of intersection correct to one decimal place.
 - **25.** (a) Show that the parametric equations

$$x = x_1 + (x_2 - x_1)t$$
 $y = y_1 + (y_2 - y_1)t$

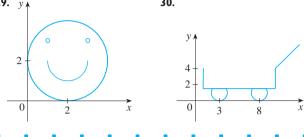
where $0 \le t \le 1$, describe the line segment that joins the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.

- (b) Find parametric equations to represent the line segment from (-2, 7) to (3, -1).
- **26.** Use a graphing device and the result of Exercise 25(a) to draw the triangle with vertices A(1, 1), B(4, 2), and C(1, 5).
 - 27. Find parametric equations for the path of a particle that moves along the circle $x^2 + (y - 1)^2 = 4$ in the manner described.
 - (a) Once around clockwise, starting at (2, 1)
 - (b) Three times around counterclockwise, starting at (2, 1)
 - (c) Halfway around counterclockwise, starting at (0, 3)
- 28. (a) Find parametric equations for the ellipse $x^2/a^2 + y^2/b^2 = 1$. [Hint: Modify the equations of the circle in Example 2.]

(b) Use these parametric equations to graph the ellipse when a = 3 and b = 1, 2, 4, and 8.

29-30 • Use a graphing calculator or computer to reproduce

(c) How does the shape of the ellipse change as b varies?

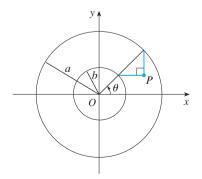


- 31–32 Compare the curves represented by the parametric equations. How do they differ?
- **31.** (a) $x = t^3$, $y = t^2$ (b) $x = t^6$, $y = t^4$ (c) $x = e^{-3t}$, $y = e^{-2t}$
- **32.** (a) x = t, $y = t^{-2}$
 - (b) $x = \cos t$, $y = \sec^2 t$
 - (c) $x = e^t$, $y = e^{-2t}$
- **33.** Derive Equations 1 for the case $\pi/2 < \theta < \pi$
- **34.** Let *P* be a point at a distance *d* from the center of a circle of radius r. The curve traced out by P as the circle rolls along a straight line is called a trochoid. (Think of the motion of a point on a spoke of a bicycle wheel.) The cycloid is the special case of a trochoid with d = r. Using the same parameter θ as for the cycloid and assuming the line is the x-axis and $\theta = 0$ when P is at one of its lowest points, show that parametric equations of the trochoid are

$$x = r\theta - d\sin\theta$$
 $y = r - d\cos\theta$

Sketch the trochoid for the cases d < r and d > r.

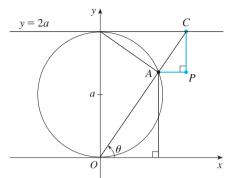
35. If a and b are fixed numbers, find parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle θ as the parameter. Then eliminate the parameter and identify the curve.



36. A curve, called a **witch of Maria Agnesi**, consists of all possible positions of the point *P* in the figure. Show that parametric equations for this curve can be written as

$$x = 2a \cot \theta$$
 $y = 2a \sin^2 \theta$

Sketch the curve.



 \square 37. Suppose that the position of one particle at time t is given by

$$x_1 = 3\sin t \qquad y_1 = 2\cos t \qquad 0 \le t \le 2\pi$$

and the position of a second particle is given by

$$x_2 = -3 + \cos t$$
 $y_2 = 1 + \sin t$ $0 \le t \le 2\pi$

- (a) Graph the paths of both particles. How many points of intersection are there?
- (b) Are any of these points of intersection *collision points*? In other words, are the particles ever at the same place at the same time? If so, find the collision points.
- (c) Describe what happens if the path of the second particle is given by

$$x_2 = 3 + \cos t$$
 $y_2 = 1 + \sin t$ $0 \le t \le 2\pi$

38. If a projectile is fired with an initial velocity of v_0 meters per second at an angle α above the horizontal and air resis-

tance is assumed to be negligible, then its position after *t* seconds is given by the parametric equations

$$x = (v_0 \cos \alpha)t$$
 $y = (v_0 \sin \alpha)t - \frac{1}{2}qt^2$

where g is the acceleration due to gravity (9.8 m/s²).

- (a) If a gun is fired with $\alpha = 30^{\circ}$ and $v_0 = 500$ m/s, when will the bullet hit the ground? How far from the gun will it hit the ground? What is the maximum height reached by the bullet?
- (b) Use a graphing device to check your answers to part (a). Then graph the path of the projectile for several other values of the angle α to see where it hits the ground. Summarize your findings.
 - (c) Show that the path is parabolic by eliminating the parameter.
- Investigate the family of curves defined by the parametric equations $x = t^2$, $y = t^3 ct$. How does the shape change as c increases? Illustrate by graphing several members of the family.
- **40.** The **swallowtail catastrophe curves** are defined by the parametric equations $x = 2ct 4t^3$, $y = -ct^2 + 3t^4$. Graph several of these curves. What features do the curves have in common? How do they change when c increases?
- The curves with equations $x = a \sin nt$, $y = b \cos t$ are called **Lissajous figures**. Investigate how these curves vary when a, b, and n vary. (Take n to be a positive integer.)
- 42. Investigate the family of curves defined by the parametric equations

$$x = \sin t (c - \sin t)$$
 $y = \cos t (c - \sin t)$

How does the shape change as c changes? In particular, you should identify the transitional values of c for which the basic shape of the curve changes.

9.2 CALCULUS WITH PARAMETRIC CURVES

Having seen how to represent curves by parametric equations, we now apply the methods of calculus to these parametric curves. In particular, we solve problems involving tangents, areas, and arc length.

TANGENTS

Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x = f(t), y = g(t) where y is also a differentiable function of x. Then the Chain Rule gives

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$