$$\lim_{x \to 0^+} x \ln x = 0$$

Therefore

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^0 = 1$$

5.8 EXERCISES

1–36 • Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If l'Hospital's Rule doesn't apply, explain why.

1.
$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1}$$

2.
$$\lim_{x \to 1} \frac{x^a - 1}{x^b - 1}$$

3.
$$\lim_{x \to (\pi/2)^+} \frac{\cos x}{1 - \sin x}$$

4.
$$\lim_{x \to 0} \frac{x + \tan x}{\sin x}$$

5.
$$\lim_{t\to 0} \frac{e^t - 1}{t^3}$$

6.
$$\lim_{t\to 0} \frac{e^{3t}-1}{t}$$

7.
$$\lim_{x \to 0} \frac{\tan px}{\tan qx}$$

$$8. \lim_{\theta \to \pi/2} \frac{1 - \sin \theta}{\csc \theta}$$

$$9. \lim_{x \to 0^+} \frac{\ln x}{x}$$

$$\mathbf{10.} \lim_{x \to \infty} \frac{\ln \ln x}{x}$$

$$11. \lim_{t\to 0} \frac{5^t - 3^t}{t}$$

$$12. \lim_{x \to 1} \frac{\ln x}{\sin \pi x}$$

13.
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$$

$$14. \lim_{x\to\infty}\frac{e^x}{x^3}$$

$$15. \lim_{x \to \infty} \frac{x}{\ln(1 + 2e^x)}$$

$$\mathbf{16.} \lim_{x \to 0} \frac{\cos mx - \cos nx}{x^2}$$

17.
$$\lim_{x \to 1} \frac{1 - x + \ln x}{1 + \cos \pi x}$$

18.
$$\lim_{x\to 0} \frac{x}{\tan^{-1}(4x)}$$

19.
$$\lim_{x \to 1} \frac{x^a - ax + a - 1}{(x - 1)^2}$$

20.
$$\lim_{x\to 0} \frac{1-e^{-2x}}{\sec x}$$

$$21. \lim_{x \to 0^+} \sqrt{x} \ln x$$

$$22. \lim_{x \to -\infty} x^2 e^x$$

23.
$$\lim_{x\to 0} \cot 2x \sin 6x$$

24.
$$\lim_{x \to 0^+} \sin x \ln x$$

25.
$$\lim_{x \to \infty} x^3 e^{-x^2}$$

26.
$$\lim_{x \to \infty} x \tan(1/x)$$

27.
$$\lim_{x \to \infty} (xe^{1/x} - x)$$

$$\lim_{x\to 0} (\csc x - \cot x)$$

$$29. \lim_{x\to\infty} (x-\ln x)$$

30.
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$

31.
$$\lim_{x\to 0^+} x^{x^2}$$

32.
$$\lim_{x\to 0^+} (\tan 2x)^x$$

33.
$$\lim_{x \to 0} (1 - 2x)^{1/x}$$

$$34. \lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{bx}$$

35.
$$\lim_{x\to 0^+} (\cos x)^{1/x^2}$$

36.
$$\lim_{x \to \infty} x^{(\ln 2)/(1 + \ln x)}$$

37-38 • Use a graph to estimate the value of the limit. Then use l'Hospital's Rule to find the exact value.

37.
$$\lim_{x \to \infty} x \left[\ln(x + 5) - \ln x \right]$$

38.
$$\lim_{x \to \pi/4} (\tan x)^{\tan 2x}$$

39. Prove that

$$\lim_{x \to \infty} \frac{e^x}{x^n} = \infty$$

for any positive integer n. This shows that the exponential function approaches infinity faster than any power of x.

40. Prove that

$$\lim_{x \to \infty} \frac{\ln x}{x^p} = 0$$

for any number p > 0. This shows that the logarithmic function approaches ∞ more slowly than any power of x.

41. If an initial amount A_0 of money is invested at an interest rate r compounded n times a year, the value of the investment after t years is

$$A = A_0 \left(1 + \frac{r}{n} \right)^{nt}$$

If we let $n \to \infty$, we refer to the *continuous compounding* of interest. Use l'Hospital's Rule to show that if interest is compounded continuously, then the amount after n years is

$$A = A_0 e^{rt}$$

42. If an object with mass *m* is dropped from rest, one model for its speed *v* after *t* seconds, taking air resistance into account, is

$$v = \frac{mg}{c} (1 - e^{-ct/m})$$

where g is the acceleration due to gravity and c is a positive constant.

- (a) Calculate $\lim_{t\to\infty} v$. What is the meaning of this limit?
- (b) For fixed t, use l'Hospital's Rule to calculate $\lim_{c\to 0^+} v$. What can you conclude about the velocity of a falling object in a vacuum?

43. If an electrostatic field *E* acts on a liquid or a gaseous polar dielectric, the net dipole moment *P* per unit volume is

$$P(E) = \frac{e^{E} + e^{-E}}{e^{E} - e^{-E}} - \frac{1}{E}$$

Show that $\lim_{E\to 0^+} P(E) = 0$.

44. A metal cable has radius *r* and is covered by insulation, so that the distance from the center of the cable to the exterior of the insulation is *R*. The velocity *v* of an electrical impulse in the cable is

$$v = -c \left(\frac{r}{R}\right)^2 \ln\left(\frac{r}{R}\right)$$

where c is a positive constant. Find the following limits and interpret your answers.

(a)
$$\lim_{R\to r^+} v$$

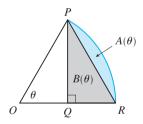
(b)
$$\lim_{r\to 0^+} v$$

45. The first appearance in print of l'Hospital's Rule was in the book *Analyse des Infiniment Petits* published by the Marquis de l'Hospital in 1696. This was the first calculus *textbook* ever published and the example that the Marquis used in that book to illustrate his rule was to find the limit of the function

$$y = \frac{\sqrt{2a^3x - x^4} - a\sqrt[3]{aax}}{a - \sqrt[4]{ax^3}}$$

as x approaches a, where a > 0. (At that time it was common to write aa instead of a^2 .) Solve this problem.

46. The figure shows a sector of a circle with central angle θ . Let $A(\theta)$ be the area of the segment between the chord PR and the arc PR. Let $B(\theta)$ be the area of the triangle PQR. Find $\lim_{\theta \to 0^+} A(\theta)/B(\theta)$.



47. If f' is continuous, f(2) = 0, and f'(2) = 7, evaluate

$$\lim_{x \to 0} \frac{f(2+3x) + f(2+5x)}{x}$$

48. For what values of *a* and *b* is the following equation true?

$$\lim_{x \to 0} \left(\frac{\sin 2x}{x^3} + a + \frac{b}{x^2} \right) = 0$$

49. If f' is continuous, use l'Hospital's Rule to show that

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = f'(x)$$

Explain the meaning of this equation with the aid of a diagram.

50. If f'' is continuous, show that

$$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x)$$

51. Let

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

- (a) Use the definition of derivative to compute f'(0).
- (b) Show that f has derivatives of all orders that are defined on \mathbb{R} . [*Hint:* First show by induction that there is a polynomial $p_n(x)$ and a nonnegative integer k_n such that $f^{(n)}(x) = p_n(x)f(x)/x^{k_n}$ for $x \neq 0$.]
- **52.** Let

$$f(x) = \begin{cases} |x|^x & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

- (a) Show that f is continuous at 0.
- (b) Investigate graphically whether f is differentiable at 0 by zooming in several times toward the point (0, 1) on the graph of f.
- (c) Show that f is not differentiable at 0. How can you reconcile this fact with the appearance of the graphs in part (b)?