EXAMPLE 4 Prove that
$$\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{1 + x^2}}$$
.

SOLUTION Let $y = \sinh^{-1}x$. Then $\sinh y = x$. If we differentiate this equation implicitly with respect to x, we get

$$\cosh y \, \frac{dy}{dx} = 1$$

Since $\cosh^2 y - \sinh^2 y = 1$ and $\cosh y \ge 0$, we have $\cosh y = \sqrt{1 + \sinh^2 y}$, so

$$\frac{dy}{dx} = \frac{1}{\cosh y} = \frac{1}{\sqrt{1 + \sinh^2 y}} = \frac{1}{\sqrt{1 + x^2}}$$

V EXAMPLE 5 Find $\frac{d}{dx} [\tanh^{-1}(\sin x)]$.

SOLUTION Using Table 6 and the Chain Rule, we have

M

$$\frac{d}{dx} \left[\tanh^{-1}(\sin x) \right] = \frac{1}{1 - (\sin x)^2} \frac{d}{dx} (\sin x)$$

$$= \frac{1}{1 - \sin^2 x} \cos x = \frac{\cos x}{\cos^2 x} = \sec x$$

5.7 EXERCISES

1–6 ■ Find the numerical value of each expression.

I. (a) sinh 0

(b) cosh 0

2. (a) tanh 0

- (b) tanh 1
- **3.** (a) sinh(ln 2)

 Another method for solving Example 4 is to differentiate

Formula 3.

(b) sinh 2

4. (a) cosh 3

(b) cosh(ln 3)

5. (a) sech 0

(b) $\cosh^{-1} 1$

6. (a) sinh 1

(b) $\sinh^{-1} 1$

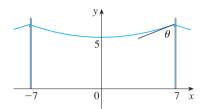
7–15 ■ Prove the identity.

- 7. sinh(-x) = -sinh x (This shows that sinh is an odd function.)
- **8.** cosh(-x) = cosh x (This shows that cosh is an even function.)
- 9. $\cosh x + \sinh x = e^x$
- 10. $\cosh x \sinh x = e^{-x}$

- 11. $\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$
- 12. $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$
- 13. $\sinh 2x = 2 \sinh x \cosh x$
- **14.** $\frac{1 + \tanh x}{1 \tanh x} = e^{2x}$
- **15.** $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx$ (*n* any real number)
- **16.** If $\sinh x = \frac{3}{4}$, find the values of the other hyperbolic functions at x.
- 17. If $\tanh x = \frac{4}{5}$, find the values of the other hyperbolic functions at x.
- **18.** (a) Use the graphs of sinh, cosh, and tanh in Figures 1–3 to draw the graphs of csch, sech, and coth.
- (b) Check the graphs that you sketched in part (a) by using a graphing device to produce them.

- **19.** Use the definitions of the hyperbolic functions to find each of the following limits.
 - (a) $\lim_{x \to a} \tanh x$
- (b) $\lim_{x \to -\infty} \tanh x$
- (c) $\lim \sinh x$
- (d) lim sinh x
- (e) $\lim_{x \to \infty} \operatorname{sech} x$
- (f) $\lim_{x \to \infty} \coth x$
- (g) $\lim_{x\to 0^+} \coth x$
- (h) $\lim_{x\to 0^-} \coth x$
- (i) $\lim_{x \to -\infty} \operatorname{csch} x$
- **20.** Prove the formulas given in Table 1 for the derivatives of the functions (a) cosh, (b) tanh, (c) csch, (d) sech, and (e) coth.
- **21.** Give an alternative solution to Example 3 by letting $y = \sinh^{-1} x$ and then using Exercise 9 and Example 1(a) with x replaced by y.
- 22. Prove Equation 4.
- **23.** Prove Formula 5 using (a) the method of Example 3 and (b) Exercise 14 with *x* replaced by *y*.
- **24.** For each of the following functions (i) give a definition like those in (2), (ii) sketch the graph, and (iii) find a formula similar to Formula 3.
 - (a) csch⁻¹
- (b) sech⁻¹
- (c) $coth^{-1}$
- **25.** Prove the formulas given in Table 6 for the derivatives of the following functions.
 - (a) \cosh^{-1}
- (b) $tanh^{-1}$
- (c) sech⁻¹
- **26–41** Find the derivative.
- **26.** $q(x) = \sinh^2 x$
- **27.** $f(x) = x \cosh x$
- **28.** $F(x) = \sinh x \tanh x$
- **29.** $h(x) = \sinh(x^2)$
- **30.** $f(t) = e^t \operatorname{sech} t$
- **31.** $h(t) = \coth \sqrt{1 + t^2}$
- **32.** $f(t) = \ln(\sinh t)$
- **33.** $H(t) = \tanh(e^t)$
- **34.** $y = \sinh(\cosh x)$
- **35.** $v = e^{\cosh 3x}$
- **36.** $y = x^2 \sinh^{-1}(2x)$
- **37.** $y = \tanh^{-1} \sqrt{x}$
- **38.** $y = x \tanh^{-1}x + \ln \sqrt{1 x^2}$
- 39. $y = x \sinh^{-1}(x/3) \sqrt{9 + x^2}$
- **40.** $y = \operatorname{sech}^{-1} \sqrt{1 x^2}, \quad x > 0$
- **41.** $y = \coth^{-1} \sqrt{x^2 + 1}$
- **42.** A flexible cable always hangs in the shape of a catenary $y = c + a \cosh(x/a)$, where c and a are constants and a > 0 (see Figure 4 and Exercise 44). Graph several members of the family of functions $y = a \cosh(x/a)$. How does the graph change as a varies?

- **43.** A telephone line hangs between two poles 14 m apart in the shape of the catenary $y = 20 \cosh(x/20) 15$, where x and y are measured in meters.
 - (a) Find the slope of this curve where it meets the right pole.
 - (b) Find the angle θ between the line and the pole.



44. Using principles from physics it can be shown that when a cable is hung between two poles, it takes the shape of a curve y = f(x) that satisfies the differential equation

$$\frac{d^2y}{dx^2} = \frac{\rho g}{T}\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

where ρ is the linear density of the cable, g is the acceleration due to gravity, and T is the tension in the cable at its lowest point, and the coordinate system is chosen appropriately. Verify that the function

$$y = f(x) = \frac{T}{\rho g} \cosh\left(\frac{\rho g x}{T}\right)$$

is a solution of this differential equation.

45. (a) Show that any function of the form

$$y = A \sinh mx + B \cosh mx$$

satisfies the differential equation $y'' = m^2 y$.

- (b) Find y = y(x) such that y'' = 9y, y(0) = -4, and y'(0) = 6.
- **46.** Evaluate $\lim_{x\to\infty} \frac{\sinh x}{e^x}$.
- **47.** At what point of the curve $y = \cosh x$ does the tangent have slope 1?
- **48.** If $x = \ln(\sec \theta + \tan \theta)$, show that $\sec \theta = \cosh x$.
- **49.** Show that if $a \neq 0$ and $b \neq 0$, then there exist numbers α and β such that $ae^x + be^{-x}$ equals either $\alpha \sinh(x + \beta)$ or $\alpha \cosh(x + \beta)$. In other words, almost every function of the form $f(x) = ae^x + be^{-x}$ is a shifted and stretched hyperbolic sine or cosine function.