5.6 EXERCISES

1–6 ■ Find the exact value of each expression.

1. (a)
$$\sin^{-1}(\sqrt{3}/2)$$

(b)
$$\cos^{-1}(-1)$$

2. (a)
$$arctan(-1)$$

(b)
$$\csc^{-1} 2$$

3. (a)
$$\tan^{-1}\sqrt{3}$$

(b)
$$\arcsin(-1/\sqrt{2})$$

4. (a)
$$\sec^{-1}\sqrt{2}$$

5. (a)
$$\sin(\sin^{-1}(0.7))$$

(b)
$$\tan^{-1} \left(\tan \frac{4\pi}{3} \right)$$

(b)
$$\cos(2 \sin^{-1}(\frac{5}{13}))$$

7. Prove that $\cos(\sin^{-1} x) = \sqrt{1 - x^2}$.

8–10 ■ Simplify the expression.

8.
$$tan(sin^{-1}x)$$

9.
$$\sin(\tan^{-1}x)$$

10.
$$\csc(\arctan 2x)$$

II. Prove Formula 6 for the derivative of \cos^{-1} by the same method as for Formula 3.

12. (a) Prove that $\sin^{-1}x + \cos^{-1}x = \pi/2$.

(b) Use part (a) to prove Formula 6.

13. Prove that
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$
.

14. Prove that
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{x\sqrt{x^2 - 1}}$$
.

15. Prove that
$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$
.

16–29 Find the derivative of the function. Simplify where possible.

16.
$$y = \sqrt{\tan^{-1} x}$$

17.
$$y = \tan^{-1} \sqrt{x}$$

18.
$$h(x) = \sqrt{1 - x^2} \arcsin x$$

19.
$$y = \sin^{-1}(2x + 1)$$

20.
$$f(x) = x \ln(\arctan x)$$

21. $H(x) = (1 + x^2) \arctan x$

22.
$$h(t) = e^{\sec^{-1} t}$$

23.
$$y = \cos^{-1}(e^{2x})$$

24.
$$y = x \cos^{-1} x - \sqrt{1 - x^2}$$

25.
$$y = \arctan(\cos \theta)$$

26.
$$y = \tan^{-1}(x - \sqrt{1 + x^2})$$

27.
$$h(t) = \cot^{-1}(t) + \cot^{-1}(1/t)$$

28.
$$y = \tan^{-1} \left(\frac{x}{a} \right) + \ln \sqrt{\frac{x-a}{x+a}}$$

29.
$$y = \arccos\left(\frac{b + a\cos x}{a + b\cos x}\right), \quad 0 \le x \le \pi, \ a > b > 0$$

30–31 ■ Find the derivative of the function. Find the domains of the function and its derivative.

30.
$$f(x) = \arcsin(e^x)$$

31.
$$g(x) = \cos^{-1}(3 - 2x)$$

32. Find
$$y'$$
 if $tan^{-1}(xy) = 1 + x^2y$.

33. If
$$q(x) = x \sin^{-1}(x/4) + \sqrt{16 - x^2}$$
, find $q'(2)$.

34. Find an equation of the tangent line to the curve $y = 3 \arccos(x/2)$ at the point $(1, \pi)$.

35–38 ■ Find the limit.

35.
$$\lim_{x \to -1^+} \sin^{-1} x$$

36.
$$\lim_{x \to \infty} \arccos\left(\frac{1 + x^2}{1 + 2x^2}\right)$$

37.
$$\lim_{x\to\infty} \arctan(e^x)$$

38.
$$\lim_{x \to 0^+} \tan^{-1}(\ln x)$$

39. A ladder 10 ft long leans against a vertical wall. If the bottom of the ladder slides away from the base of the wall at a speed of 2 ft/s, how fast is the angle between the ladder and the wall changing when the bottom of the ladder is 6 ft from the base of the wall?

40. A lighthouse is located on a small island, 3 km away from the nearest point *P* on a straight shoreline, and its light makes four revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from *P*?

41. Some authors define $y = \sec^{-1}x \iff \sec y = x$ and $y \in [0, \pi/2) \cup (\pi/2, \pi]$. Show that with this definition, we have (instead of the formula given in Exercise 14)

$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}} \qquad |x| > 1$$

42. (a) Sketch the graph of the function $f(x) = \sin(\sin^{-1}x)$.

(b) Sketch the graph of the function $g(x) = \sin^{-1}(\sin x)$, $x \in \mathbb{R}$.

(c) Show that $g'(x) = \frac{\cos x}{|\cos x|}$.

(d) Sketch the graph of $h(x) = \cos^{-1}(\sin x)$, $x \in \mathbb{R}$, and find its derivative.