# 6.2

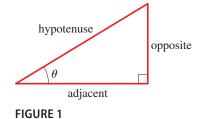
# TRIGONOMETRY OF RIGHT TRIANGLES

# ■ Trigonometric Ratios ■ Special Triangles; Calculators ■ Applications of Trigonometry of Right Triangles

In this section we study certain ratios of the sides of right triangles, called trigonometric ratios, and give several applications.

# **■** Trigonometric Ratios

Consider a right triangle with  $\theta$  as one of its acute angles. The trigonometric ratios are defined as follows (see Figure 1).



### THE TRIGONOMETRIC RATIOS

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{opposit}}{\text{odiagon}}$$

$$\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}}$$

$$\sec \theta = \frac{\text{hypotenus}}{\text{adjacent}}$$

$$\cot \theta = \frac{\text{adjacent}}{\text{opposite}}$$

30

The symbols we use for these ratios are abbreviations for their full names: **sine**, **cosine**, **tangent**, **cosecant**, **secant**, **cotangent**. Since any two right triangles with angle  $\theta$  are similar, these ratios are the same, regardless of the size of the triangle; the trigonometric ratios depend only on the angle  $\theta$  (see Figure 2).

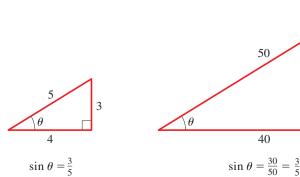


FIGURE 2

# **EXAMPLE 1** Finding Trigonometric Ratios

Find the six trigonometric ratios of the angle  $\theta$  in Figure 3.

**SOLUTION** By the definition of trigonometric ratios, we get

$$\sin \theta = \frac{2}{3}$$
  $\cos \theta = \frac{\sqrt{5}}{3}$   $\tan \theta = \frac{2}{\sqrt{5}}$   
 $\csc \theta = \frac{3}{2}$   $\sec \theta = \frac{3}{\sqrt{5}}$   $\cot \theta = \frac{\sqrt{5}}{2}$ 

FIGURE 3

Now Try Exercise 3

# **EXAMPLE 2** Finding Trigonometric Ratios

If  $\cos \alpha = \frac{3}{4}$ , sketch a right triangle with acute angle  $\alpha$ , and find the other five trigonometric ratios of  $\alpha$ .

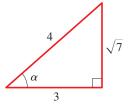


FIGURE 4

**SOLUTION** Since  $\cos \alpha$  is defined as the ratio of the adjacent side to the hypotenuse, we sketch a triangle with hypotenuse of length 4 and a side of length 3 adjacent to  $\alpha$ . If the opposite side is x, then by the Pythagorean Theorem,  $3^2 + x^2 = 4^2$  or  $x^2 = 7$ , so  $x = \sqrt{7}$ . We then use the triangle in Figure 4 to find the ratios.

$$\sin \alpha = \frac{\sqrt{7}}{4}$$
  $\cos \alpha = \frac{3}{4}$   $\tan \alpha = \frac{\sqrt{7}}{3}$   
 $\csc \alpha = \frac{4}{\sqrt{7}}$   $\sec \alpha = \frac{4}{3}$   $\cot \alpha = \frac{3}{\sqrt{7}}$ 

Now Try Exercise 23

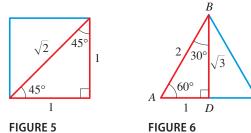
# **Special Triangles; Calculators**

There are special trigonometric ratios that can be calculated from certain triangles (which we call special triangles). We can also use a calculator to find trigonometric ratios.

**Special Ratios** Certain right triangles have ratios that can be calculated easily from the Pythagorean Theorem. Since they are used frequently, we mention them here.

The first triangle is obtained by drawing a diagonal in a square of side 1 (see Figure 5). By the Pythagorean Theorem this diagonal has length  $\sqrt{2}$ . The resulting triangle has angles 45°, 45°, and 90° (or  $\pi/4$ ,  $\pi/4$ , and  $\pi/2$ ). To get the second triangle, we start with an equilateral triangle ABC of side 2 and draw the perpendicular bisector DB of the base, as in Figure 6. By the Pythagorean Theorem the length of DB is  $\sqrt{3}$ . Since DB bisects angle ABC, we obtain a triangle with angles 30°, 60°, and 90° (or  $\pi/6$ ,  $\pi/3$ , and  $\pi/2$ ).

HIPPARCHUS (circa 140 B.C.) is considered the founder of trigonometry. He constructed tables for a function closely related to the modern sine function and evaluated for angles at half-degree intervals. These are considered the first trigonometric tables. He used his tables mainly to calculate the paths of the planets through the heavens.

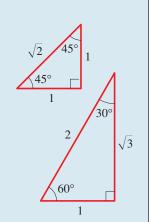


We can now use the special triangles in Figures 5 and 6 to calculate the trigonometric ratios for angles with measures 30°, 45°, and 60° (or  $\pi/6$ ,  $\pi/4$ , and  $\pi/3$ ). These are listed in the table below.

#### SPECIAL VALUES OF THE TRIGONOMETRIC FUNCTIONS

The following values of the trigonometric functions are obtained from the special triangles.

| $\theta$ in degrees | θ in radians    | $\sin \theta$        | $\cos \theta$        | $\tan \theta$        | csc θ                 | $\sec \theta$         | cot θ                |
|---------------------|-----------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|----------------------|
| 0                   | 0               | 0                    | 1                    | 0                    | _                     | 1                     | _                    |
| 30°                 | $\frac{\pi}{6}$ | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{3}}{3}$ | 2                     | $\frac{2\sqrt{3}}{3}$ | $\sqrt{3}$           |
| 45°                 | $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1                    | $\sqrt{2}$            | $\sqrt{2}$            | 1                    |
| 60°                 | $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           | $\frac{2\sqrt{3}}{3}$ | 2                     | $\frac{\sqrt{3}}{3}$ |
| 90°                 | $\frac{\pi}{2}$ | 1                    | 0                    | _                    | 1                     | _                     | 0                    |



It's useful to remember these special trigonometric ratios because they occur often. Of course, they can be recalled easily if we remember the triangles from which they are obtained.

For an explanation of numerical methods, see the margin note on page 433.

**Using a Calculator** To find the values of the trigonometric ratios for other angles, we use a calculator. Mathematical methods (called *numerical methods*) used in finding the trigonometric ratios are programmed directly into scientific calculators. For instance, when the sin key is pressed, the calculator computes an approximation to the value of the sine of the given angle. Calculators give the values of sine, cosine, and tangent; the other ratios can be easily calculated from these by using the following reciprocal relations:

$$\csc t = \frac{1}{\sin t}$$
  $\sec t = \frac{1}{\cos t}$   $\cot t = \frac{1}{\tan t}$ 

You should check that these relations follow immediately from the definitions of the trigonometric ratios.

We follow the convention that when we write sin t, we mean the sine of the angle whose radian measure is t. For instance, sin 1 means the sine of the angle whose radian measure is 1. When using a calculator to find an approximate value for this number, set your calculator to radian mode; you will find that  $\sin 1 \approx 0.841471$ . If you want to find the sine of the angle whose measure is 1°, set your calculator to degree mode; you will find that  $\sin 1^{\circ} \approx 0.0174524$ .

### **EXAMPLE 3** Using a Calculator

Using a calculator, find the following.

- (a) tan 40°
- (b)  $\cos 20^{\circ}$
- (c) cot 14°
- (d) csc 80°

**SOLUTION** Making sure our calculator is set in degree mode and rounding the results to six decimal places, we get the following:

- (a)  $\tan 40^{\circ} \approx 0.839100$
- **(b)**  $\cos 20^{\circ} \approx 0.939693$
- (c)  $\cot 14^\circ = \frac{1}{\tan 14^\circ} \approx 4.010781$  (d)  $\csc 80^\circ = \frac{1}{\sin 80^\circ} \approx 1.015427$



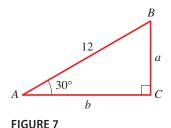
# **Applications of Trigonometry of Right Triangles**

A triangle has six parts: three angles and three sides. To solve a triangle means to determine all of its parts from the information known about the triangle, that is, to determine the lengths of the three sides and the measures of the three angles.

#### **DISCOVERY PROJECT**

#### Similarity

Similarity of triangles is the basic concept underlying the definition of the trigonometric functions. The ratios of the sides of a triangle are the same as the corresponding ratios in any similar triangle. But the concept of similarity of figures applies to all shapes, not just triangles. In this project we explore how areas and volumes of similar figures are related. These relationships allow us to determine whether an ape the size of King Kong (that is, an ape similar to, but much larger than, a real ape) can actually exist. You can find the project at www.stewartmath.com.



#### **EXAMPLE 4** Solving a Right Triangle

Solve triangle ABC, shown in Figure 7.

**SOLUTION** It's clear that  $\angle B = 60^{\circ}$ . From Figure 7 we have

$$\sin 30^\circ = \frac{a}{12}$$
 Definition of sine  $a = 12 \sin 30^\circ$  Multiply by 12  $= 12(\frac{1}{2}) = 6$  Evaluate

Also from Figure 7 we have

$$\cos 30^{\circ} = \frac{b}{12}$$
 Definition of cosine  
 $b = 12 \cos 30^{\circ}$  Multiply by 12  
 $= 12 \left(\frac{\sqrt{3}}{2}\right) = 6\sqrt{3}$  Evaluate

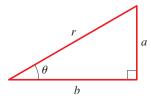


FIGURE 8  $a = r \sin \theta$ ,  $b = r \cos \theta$ 

**ARISTARCHUS OF SAMOS** (310-230 B.C.) was a famous Greek scientist, musician, astronomer, and geometer. He observed that the angle between the sun and moon can be measured directly (see the figure below). In his book On the Sizes and Distances of the Sun and the Moon he estimated the distance to the sun by observing that when the moon is exactly half full, the triangle formed by the sun, the moon, and the earth has a right angle at the moon. His method was similar to the one described in Exercise 67 in this section. Aristarchus was the first to advance the theory that the earth and planets move around the sun, an idea that did not gain full acceptance until after the time of Copernicus, 1800 years

later. For this reason Aristarchus is often

called "the Copernicus of antiquity."



# Now Try Exercise 37

Figure 8 shows that if we know the hypotenuse r and an acute angle  $\theta$  in a right triangle, then the legs a and b are given by

$$a = r \sin \theta$$
 and  $b = r \cos \theta$ 

The ability to solve right triangles by using the trigonometric ratios is fundamental to many problems in navigation, surveying, astronomy, and the measurement of distances. The applications we consider in this section always involve right triangles, but as we will see in the next three sections, trigonometry is also useful in solving triangles that are not right triangles.

To discuss the next examples, we need some terminology. If an observer is looking at an object, then the line from the eye of the observer to the object is called the **line of** sight (Figure 9). If the object being observed is above the horizontal, then the angle between the line of sight and the horizontal is called the **angle of elevation**. If the object is below the horizontal, then the angle between the line of sight and the horizontal is called the **angle of depression**. In many of the examples and exercises in this chapter, angles of elevation and depression will be given for a hypothetical observer at ground level. If the line of sight follows a physical object, such as an inclined plane or a hillside, we use the term **angle of inclination**.

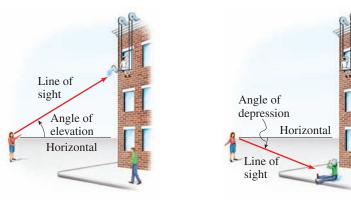


FIGURE 9

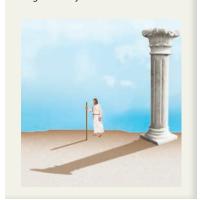
The next example gives an important application of trigonometry to the problem of measurement: We measure the height of a tall tree without having to climb it! Although the example is simple, the result is fundamental to understanding how the trigonometric ratios are applied to such problems.

**THALES OF MILETUS** (circa 625-547 B.C.) is the legendary founder of Greek geometry. It is said that he calculated the height of a Greek column by comparing the length of the shadow of his staff with that of the column. Using properties of similar triangles, he argued that the ratio of the height h of the column to the height h' of his staff was equal to the ratio of the length s of the column's shadow to the length s' of the staff's shadow:

$$\frac{h}{h'} = \frac{s}{s'}$$

Since three of these quantities are known, Thales was able to calculate the height of the column.

According to legend, Thales used a similar method to find the height of the Great Pyramid in Egypt, a feat that impressed Egypt's king. Plutarch wrote that "although he [the king of Egypt] admired you [Thales] for other things, yet he particularly liked the manner by which you measured the height of the pyramid without any trouble or instrument." The principle Thales used, the fact that ratios of corresponding sides of similar triangles are equal, is the foundation of the subject of trigonometry.



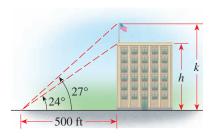


FIGURE 11

#### **EXAMPLE 5** Finding the Height of a Tree

A giant redwood tree casts a shadow 532 ft long. Find the height of the tree if the angle of elevation of the sun is 25.7°.

**SOLUTION** Let the height of the tree be h. From Figure 10 we see that

$$\frac{h}{532} = \tan 25.7^{\circ}$$
 Definition of tangent

 $h = 532 \tan 25.7^{\circ}$  Multiply by 532

 $\approx 532(0.48127) \approx 256$  Use a calculator

Therefore the height of the tree is about 256 ft.

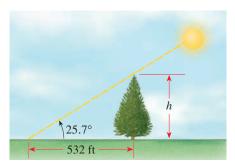


FIGURE 10

Now Try Exercise 53

# **EXAMPLE 6** A Problem Involving Right Triangles

From a point on the ground 500 ft from the base of a building, an observer finds that the angle of elevation to the top of the building is 24° and that the angle of elevation to the top of a flagpole atop the building is 27°. Find the height of the building and the length of the flagpole.

**SOLUTION** Figure 11 illustrates the situation. The height of the building is found in the same way that we found the height of the tree in Example 4.

$$\frac{h}{500} = \tan 24^{\circ}$$
 Definition of tangent

 $h = 500 \tan 24^{\circ}$  Multiply by 500

 $\approx 500(0.4452) \approx 223$  Use a calculator

The height of the building is approximately 223 ft.

To find the length of the flagpole, let's first find the height from the ground to the top of the pole.

$$\frac{k}{500} = \tan 27^{\circ}$$
 Definition of tangent
$$k = 500 \tan 27^{\circ}$$
 Multiply by 500
$$\approx 500(0.5095)$$
 Use a calculator
$$\approx 255$$

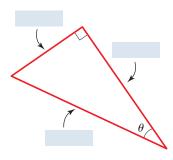
To find the length of the flagpole, we subtract h from k. So the length of the pole is approximately 255 - 223 = 32 ft.

Now Try Exercise 61

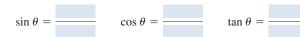
## **6.2 EXERCISES**

#### **CONCEPTS**

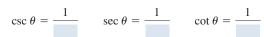
**1.** A right triangle with an angle  $\theta$  is shown in the figure.



- (a) Label the "opposite" and "adjacent" sides of  $\theta$  and the hypotenuse of the triangle.
- (b) The trigonometric functions of the angle  $\theta$  are defined as



- (c) The trigonometric ratios do not depend on the size of the triangle. This is because all right triangles with the same acute angle  $\theta$  are \_\_\_\_
- 2. The reciprocal identities state that

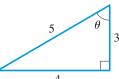


#### **SKILLS**

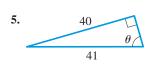
3–8 ■ Trigonometric Ratios Find the exact values of the six trigonometric ratios of the angle  $\theta$  in the triangle.

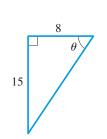
6.

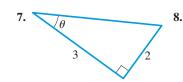


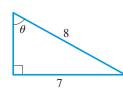




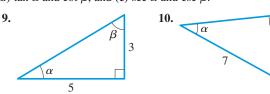








**9–10** ■ Trigonometric Ratios Find (a)  $\sin \alpha$  and  $\cos \beta$ , (b)  $\tan \alpha$  and  $\cot \beta$ , and (c)  $\sec \alpha$  and  $\csc \beta$ .

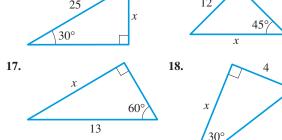


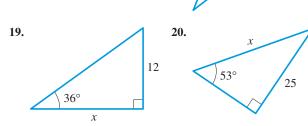
- **11–14** Using a Calculator Use a calculator to evaluate the expression. Round your answer to five decimal places.
- **11.** (a) sin 22° **(b)** cot 23° **12.** (a) cos 37° **(b)** csc 48°
  - **13.** (a) sec 13° **(b)** tan 51° **14.** (a) csc 10° **(b)** sin 46°

15.

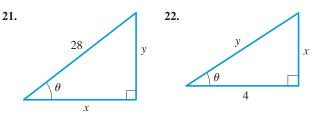
- **15–20** Finding an Unknown Side Find the side labeled x. In
- Exercises 17 and 18 state your answer rounded to five decimal places.

16.





**21–22** ■ Trigonometric Ratios Express x and y in terms of trigonometric ratios of  $\theta$ .



- 23–28 Trigonometric Ratios Sketch a triangle that has acute angle  $\theta$ , and find the other five trigonometric ratios of  $\theta$ .
- **23.**  $\tan \theta = \frac{5}{6}$  **24.**  $\cos \theta = \frac{12}{13}$  **26.**  $\tan \theta = \sqrt{3}$  **27.**  $\csc \theta = \frac{11}{6}$ **23.**  $\tan \theta = \frac{5}{6}$ **25.**  $\cot \theta = 1$ **28.** cot  $\theta = \frac{5}{3}$

#### **29–36** ■ Evaluating an Expression Evaluate the expression without using a calculator.

**29.** 
$$\sin \frac{\pi}{6} + \cos \frac{\pi}{6}$$

31. 
$$\sin 30^{\circ} \cos 60^{\circ} + \sin 60^{\circ} \cos 30^{\circ}$$

32. 
$$(\sin 60^\circ)^2 + (\cos 60^\circ)^2$$

33. 
$$(\cos 30^\circ)^2 - (\sin 30^\circ)^2$$

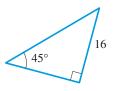
$$34. \left(\sin\frac{\pi}{3}\cos\frac{\pi}{4} - \sin\frac{\pi}{4}\cos\frac{\pi}{3}\right)^2$$

$$35. \left(\cos\frac{\pi}{4} + \sin\frac{\pi}{6}\right)^2$$

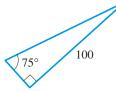
**35.** 
$$\left(\cos\frac{\pi}{4} + \sin\frac{\pi}{6}\right)^2$$
 **36.**  $\left(\sin\frac{\pi}{3}\tan\frac{\pi}{6} + \csc\frac{\pi}{4}\right)^2$ 

# **37–44** ■ **Solving a Right Triangle** Solve the right triangle.

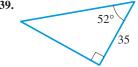
**37.** 



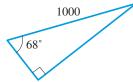
38.



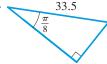
39.



40.



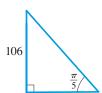
41.



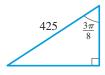
42.



43.

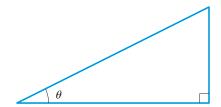


44.



#### **SKILLS Plus**

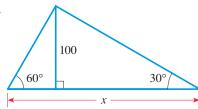
**45.** Using a Ruler to Estimate Trigonometric Ratios Use a ruler to carefully measure the sides of the triangle, and then use your measurements to estimate the six trigonometric ratios of  $\theta$ .



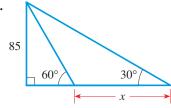
46. Using a Protractor to Estimate Trigonometric Ratios Using a protractor, sketch a right triangle that has the acute angle 40°. Measure the sides carefully, and use your results to estimate the six trigonometric ratios of 40°.

**47–50** ■ Finding an Unknown Side Find x rounded to one decimal place.

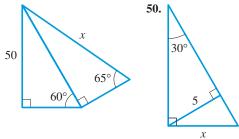
47.



48.



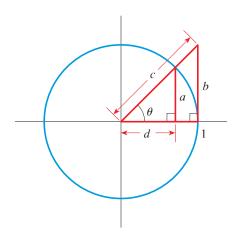
49.



**51. Trigonometric Ratios** Express the length x in terms of the trigonometric ratios of  $\theta$ .

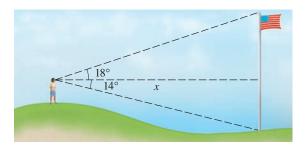


**52.** Trigonometric Ratios Express the lengths a, b, c, and d in the figure in terms of the trigonometric ratios of  $\theta$ .

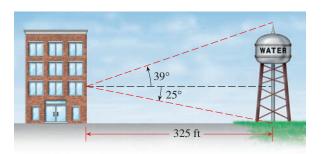


#### **APPLICATIONS**

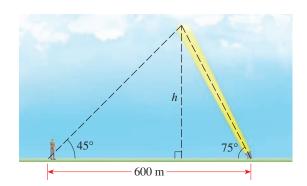
- 53. Height of a Building The angle of elevation to the top of the Empire State Building in New York is found to be 11° from the ground at a distance of 1 mi from the base of the building. Using this information, find the height of the Empire State Building.
  - **54. Gateway Arch** A plane is flying within sight of the Gateway Arch in St. Louis, Missouri, at an elevation of 35,000 ft. The pilot would like to estimate her distance from the Gateway Arch. She finds that the angle of depression to a point on the ground below the arch is 22°.
    - (a) What is the distance between the plane and the arch?
    - (b) What is the distance between a point on the ground directly below the plane and the arch?
  - **55.** Deviation of a Laser Beam A laser beam is to be directed toward the center of the moon, but the beam strays 0.5° from its intended path.
    - (a) How far has the beam diverged from its assigned target when it reaches the moon? (The distance from the earth to the moon is 240,000 mi.)
    - (b) The radius of the moon is about 1000 mi. Will the beam strike the moon?
  - **56.** Distance at Sea From the top of a 200-ft lighthouse, the angle of depression to a ship in the ocean is 23°. How far is the ship from the base of the lighthouse?
  - **57.** Leaning Ladder A 20-ft ladder leans against a building so that the angle between the ground and the ladder is 72°. How high does the ladder reach on the building?
  - **58.** Height of a Tower A 600-ft guy wire is attached to the top of a communications tower. If the wire makes an angle of 65° with the ground, how tall is the communications tower?
  - **59.** Elevation of a Kite A man is lying on the beach, flying a kite. He holds the end of the kite string at ground level and estimates the angle of elevation of the kite to be 50°. If the string is 450 ft long, how high is the kite above the ground?
  - **60. Determining a Distance** A woman standing on a hill sees a flagpole that she knows is 60 ft tall. The angle of depression to the bottom of the pole is 14°, and the angle of elevation to the top of the pole is  $18^{\circ}$ . Find her distance x from the pole.



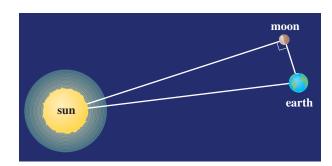
**61.** Height of a Tower A water tower is located 325 ft from a building (see the figure). From a window in the building, an observer notes that the angle of elevation to the top of the tower is 39° and that the angle of depression to the bottom of the tower is 25°. How tall is the tower? How high is the window?



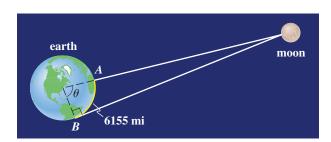
- **62. Determining a Distance** An airplane is flying at an elevation of 5150 ft, directly above a straight highway. Two motorists are driving cars on the highway on opposite sides of the plane. The angle of depression to one car is 35°, and that to the other is 52°. How far apart are the cars?
- **63. Determining a Distance** If both cars in Exercise 62 are on one side of the plane and if the angle of depression to one car is 38° and that to the other car is 52°, how far apart are the cars?
- **64. Height of a Balloon** A hot-air balloon is floating above a straight road. To estimate their height above the ground, the balloonists simultaneously measure the angle of depression to two consecutive mileposts on the road on the same side of the balloon. The angles of depression are found to be 20° and 22°. How high is the balloon?
- **65.** Height of a Mountain To estimate the height of a mountain above a level plain, the angle of elevation to the top of the mountain is measured to be 32°. One thousand feet closer to the mountain along the plain, it is found that the angle of elevation is 35°. Estimate the height of the mountain.
- **66.** Height of Cloud Cover To measure the height of the cloud cover at an airport, a worker shines a spotlight upward at an angle 75° from the horizontal. An observer 600 m away measures the angle of elevation to the spot of light to be 45°. Find the height h of the cloud cover.



**67. Distance to the Sun** When the moon is exactly half full, the earth, moon, and sun form a right angle (see the figure). At that time the angle formed by the sun, earth, and moon is measured to be 89.85°. If the distance from the earth to the moon is 240,000 mi, estimate the distance from the earth to the sun.



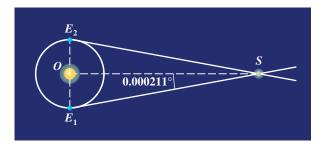
- **68. Distance to the Moon** To find the distance to the sun as in Exercise 67, we needed to know the distance to the moon. Here is a way to estimate that distance: When the moon is seen at its zenith at a point *A* on the earth, it is observed to be at the horizon from point *B* (see the following figure). Points *A* and *B* are 6155 mi apart, and the radius of the earth is 3960 mi.
  - (a) Find the angle  $\theta$  in degrees.
  - **(b)** Estimate the distance from point *A* to the moon.



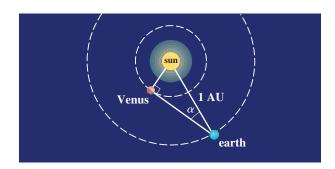
**69. Radius of the Earth** In Exercise 80 of Section 6.1 a method was given for finding the radius of the earth. Here is a more modern method: From a satellite 600 mi above the earth it is observed that the angle formed by the vertical and the line of sight to the horizon is 60.276°. Use this information to find the radius of the earth.



**70. Parallax** To find the distance to nearby stars, the method of parallax is used. The idea is to find a triangle with the star at one vertex and with a base as large as possible. To do this, the star is observed at two different times exactly 6 months apart, and its apparent change in position is recorded. From these two observations  $\angle E_1SE_2$  can be calculated. (The times are chosen so that  $\angle E_1SE_2$  is a large as possible, which guarantees that  $\angle E_1OS$  is 90°.) The angle  $E_1SO$  is called the *parallax* of the star. Alpha Centauri, the star nearest the earth, has a parallax of 0.000211°. Estimate the distance to this star. (Take the distance from the earth to the sun to be  $9.3 \times 10^7$  mi.)



71. Distance from Venus to the Sun The elongation  $\alpha$  of a planet is the angle formed by the planet, earth, and sun (see the figure). When Venus achieves its maximum elongation of 46.3°, the earth, Venus, and the sun form a triangle with a right angle at Venus. Find the distance between Venus and the sun in astronomical units (AU). (By definition the distance between the earth and the sun is 1 AU.)



#### DISCUSS DISCOVER PROVE WRITE

**72. DISCUSS: Similar Triangles** If two triangles are similar, what properties do they share? Explain how these properties make it possible to define the trigonometric ratios without regard to the size of the triangle.