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I  I1 t 2  (in amperes, A) t seconds after the switch is closed 
is I  60

13 11  e13t/5 2 .
(a)  Use this equation to express the time t as a function of 

the current I.
(b) After how many seconds is the current 2 A?

60 V

13 !

5 H

Switch

 102. Learning Curve  A learning curve is a graph of a function 
P1 t 2  that measures the performance of someone learning a 
skill as a function of the training time t. At first, the rate of 
learning is rapid. Then, as performance increases and 
approaches a maximal value M, the rate of learning 
decreases. It has been found that the function

P1 t 2  M  Cekt

  where k and C are positive constants and C  M is a rea-
sonable model for learning.
(a)  Express the learning time t as a function of the per-

formance level P.

(b)  For a pole-vaulter in training, the learning curve is  
given by

P1 t 2  20  14e0.024t

  where P1 t 2  is the height he is able to pole-vault after 
t months. After how many months of training is he able 
to vault 12 ft?

(c) Draw a graph of the learning curve in part (b).

DISCUSS ■ DISCOVER ■ PROVE ■ WRITE
 103. DISCUSS: Estimating a Solution  Without actually solving 

the equation, find two whole numbers between which the 
solution of 9x  20 must lie. Do the same for 9x  100. 
Explain how you reached your conclusions.

 104.  DISCUSS ■ DISCOVER: A Surprising Equation  Take loga-
rithms to show that the equation

x1/log x  5

  has no solution. For what values of k does the equation

x1/log x  k

   have a solution? What does this tell us about the graph of 
the function f 1x 2  x1/log x? Confirm your answer using a 
graphing device.

 105.  DISCUSS: Disguised Equations  Each of these equations 
can be transformed into an equation of linear or quadratic 
type by applying the hint. Solve each equation.
(a) 1x  1 2 log1x12  1001x  1 2
 [Hint: Take log of each side.]
(b) log2 x  log4 x  log8 x  11
 [Hint: Change all logs to base 2.]
(c) 4x  2x1  3
 [Hint: Write as a quadratic in 2x.]

4.6 MODELING WITH EXPONENTIAL FUNCTIONS
■ Exponential Growth (Doubling Time) ■ Exponential Growth (Relative Growth Rate)  
■ Radioactive Decay ■ Newton’s Law of Cooling

Many processes that occur in nature, such as population growth, radioactive decay, heat 
diffusion, and numerous others, can be modeled by using exponential functions. In this 
section we study exponential models.

■ Exponential Growth (Doubling Time)
Suppose we start with a single bacterium, which divides every hour. After one hour we 
have 2 bacteria, after two hours we have 22 or 4 bacteria, after three hours we have 23 
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SECTION 4.6 ■ Modeling with Exponential Functions 371

or 8 bacteria, and so on (see Figure 1). We see that we can model the bacteria population 
after t hours by f 1 t 2  2t.

FIGURE 1 Bacteria population

0 1 2 3 4 5 6

If we start with 10 of these bacteria, then the population is modeled by f 1 t 2  10 # 2t. 
A slower-growing strain of bacteria doubles every 3 hours; in this case the population 
is modeled by f 1 t 2  10 # 2t/3. In general, we have the following.

EXPONENTIAL GROWTH (DOUBLING TIME)

If the initial size of a population is n0 and the doubling time is a, then the size 
of the population at time t is 

n1 t 2  n02t/a

where a and t are measured in the same time units (minutes, hours, days, years, 
and so on).

EXAMPLE 1 ■ Bacteria Population 
Under ideal conditions a certain bacteria population doubles every three hours. Ini-
tially, there are 1000 bacteria in a colony.

(a) Find a model for the bacteria population after t hours.

(b) How many bacteria are in the colony after 15 hours?

(c) After how many hours will the bacteria count reach 100,000?

SOLUTION  

(a) The population at time t is modeled by 

n1 t 2  1000 # 2t/3

  where t is measured in hours.

(b) After 15 hours the number of bacteria is 

n115 2  1000 # 215/3  32,000

(c)  We set n1 t 2  100,000 in the model that we found in part (a) and solve the 
resulting exponential equation for t.

 100,000  1000 # 2t/3     n1 t 2  1000 # 2t/3

 100  2t/3     Divide by 1000

 log 100  log 2t/3     Take log of each side

 2 
t
3

  log 2     Properties of log

 t 
6

log 2
< 19.93    Solve for t

  The bacteria level reaches 100,000 in about 20 hours.

Now Try Exercise 1 ■
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372 CHAPTER 4 ■ Exponential and Logarithmic Functions

EXAMPLE 2 ■ Rabbit Population 
A certain breed of rabbit was introduced onto a small island 8 months ago. The  
current rabbit population on the island is estimated to be 4100 and doubling every  
3 months. 

(a) What was the initial size of the rabbit population?

(b) Estimate the population 1 year after the rabbits were introduced to the island.

(c) Sketch a graph of the rabbit population.

SOLUTION  

(a) The doubling time is a  3, so the population at time t is 

n1 t 2  n02t/3    Model

   where n0 is the initial population. Since the population is 4100 when t is  
8 months, we have 

 n18 2  n028/3    From model

 4100  n028/3    Because n18 2  4100

 n0 
4100

28/3
    Divide by 28/3 and switch sides

 n0 < 645     Calculator

  Thus we estimate that 645 rabbits were introduced onto the island. 

(b)  From part (a) we know that the initial population is n0  645, so we can model 
the population after t months by 

n1 t 2  645 # 2t/3    Model

  After 1 year t  12, so

n112 2  645 # 212/3  10,320

  So after 1 year there would be about 10,000 rabbits.

(c) We !rst note that the domain is t $ 0. The graph is shown in Figure 2.

0 20

20,000

FIGURE 2 n1 t 2  645 # 2t/3

Now Try Exercise 3 ■

■ Exponential Growth (Relative Growth Rate)
We have used an exponential function with base 2 to model population growth (in terms 
of the doubling time). We could also model the same population with an exponential 
function with base 3 (in terms of the tripling time). In fact, we can !nd an exponential 
model with any base. If we use the base e, we get a population model in terms of the 
relative growth rate r: the rate of population growth expressed as a proportion of the 
population at any time. In this case r is the “instantaneous” growth rate. (In calculus  
the concept of instantaneous rate is given a precise meaning.) For instance, if r  0.02, 
then at any time t the growth rate is 2% of the population at time t.

The growth of a population with rela-
tive growth rate r is analogous to the 
growth of an investment with continu-
ously compounded interest rate r.
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SECTION 4.6 ■ Modeling with Exponential Functions 373

EXPONENTIAL GROWTH (RELATIVE GROWTH RATE)

A population that experiences exponential growth increases according to the 
model

n1 t 2  n0e rt

where  n1 t 2  population at time t

  n0  initial size of the population

  r   relative rate of growth (expressed as a proportion of the 
 population)

  t  time

Notice that the formula for population growth is the same as that for continuously 
compounded interest. In fact, the same principle is at work in both cases: The growth 
of a population (or an investment) per time period is proportional to the size of  
the population (or the amount of the investment). A population of 1,000,000 will 
increase more in one year than a population of 1000; in exactly the same way, an 
investment of $1,000,000 will increase more in one year than an investment of 
$1000.

In the following examples we assume that the populations grow exponentially.

EXAMPLE 3 ■ Predicting the Size of a Population
The initial bacterium count in a culture is 500. A biologist later makes a sample  
count of bacteria in the culture and finds that the relative rate of growth is 40%  
per hour.

(a) Find a function that models the number of bacteria after t hours.

(b) What is the estimated count after 10 hours?

(c) After how many hours will the bacteria count reach 80,000?

(d) Sketch a graph of the function n1 t 2 .
SOLUTION

(a) We use the exponential growth model with n0  500 and r  0.4 to get

n1 t 2  500e0.4t

  where t is measured in hours.

(b) Using the function in part (a), we find that the bacterium count after 10 hours is

n110 2  500e0.4 1102  500e4 < 27,300

(c) We set n1 t 2  80,000 and solve the resulting exponential equation for t.

 80,000  500 # e0.4t     n1 t 2  500 # e0.4t

 160  e0.4t     Divide by 500

 ln 160  0.4t     Take ln of each side

 t 
ln 160

0.4
< 12.68    Solve for t

  The bacteria level reaches 80,000 in about 12.7 hours.

(d) The graph is shown in Figure 3.

Now Try Exercise 5 ■

0

5000

6500

n(t)=500eº—¢‰

FIGURE 3

71759_ch04_329-400.indd   373 9/16/14   5:24 PM

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



374 CHAPTER 4 ■ Exponential and Logarithmic Functions

EXAMPLE 4 ■ Comparing Di!erent Rates of Population Growth
In 2000 the population of the world was 6.1 billion, and the relative rate of growth 
was 1.4% per year. It is claimed that a rate of 1.0% per year would make a significant 
 difference in the total population in just a few decades. Test this claim by estimating 
the population of the world in the year 2050 using a relative rate of growth of  
(a) 1.4% per year and (b) 1.0% per year.

Graph the population functions for the next 100 years for the two relative growth 
rates in the same viewing rectangle.

SOLUTION

(a) By the exponential growth model we have

n1 t 2  6.1e0.014t

   where n1 t 2  is measured in billions and t is measured in years since 2000. Because 
the year 2050 is 50 years after 2000, we find

n150 2  6.1e0.014 1502  6.1e0.7 < 12.3

  The estimated population in the year 2050 is about 12.3 billion.

(b) We use the function

 n1 t 2  6.1e0.010t

  and find
 n150 2  6.1e0.010 1502  6.1e0.50 < 10.1

  The estimated population in the year 2050 is about 10.1 billion.

The graphs in Figure 4 show that a small change in the relative rate of growth will, 
over time, make a large difference in population size.

Now Try Exercise 7 ■

EXAMPLE 5 ■ Expressing a Model in Terms of e 
A culture starts with 10,000 bacteria, and the number doubles every 40 minutes.

(a)  Find a function n1 t 2  n02t/a that models the number of bacteria after t hours.

(b)  Find a function n1 t 2  n0ert that models the number of bacteria after t hours.

(c) Sketch a graph of the number of bacteria at time t.

SOLUTION  

(a)  The initial population is n0  10,000. The doubling time is a  40 min  2/3 h. 
Since 1/a  3/2  1.5, the model is

n1 t 2  10,000 # 21.5t

(b)  The initial population is n0  10,000. We need to !nd the relative growth rate r. 
Since there are 20,000 bacteria when t  2/3 h, we have

 20,000  10,000er 12/32     n1 t 2  10,000ert

 2  er 12/32     Divide by 10,000

 ln 2  ln er 12/32     Take ln of each side

 ln 2  r 12/3 2     Property of ln

 r 
3 ln 2

2
< 1.0397    Solve for r

  Now that we know the relative growth rate r, we can !nd the model:

n1 t 2  10,000e1.0397t

The relative growth of world popula-
tion has been declining over the past 
few decades—from 2% in 1995 to 
1.1% in 2013.

Standing Room Only
The population of the world was about 
6.1 billion in 2000 and was increasing at 
1.4% per year. Assuming that each per-
son occupies an average of 4 ft2 of the 
surface of the earth, the exponential 
model for population growth projects 
that by the year 2801 there will be stand-
ing room only! (The total land surface 
area of the world is about 1.8  1015 ft2.)

30

0 100

n(t)=6.1e0.014t

n(t)=6.1e0.01t

FIGURE 4
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SECTION 4.6 ■ Modeling with Exponential Functions 375

(c)  We can graph the model in part (a) or the one in part (b). The graphs are identi-
cal. See Figure 5.

FIGURE 5 Graphs of y  10,000 # 21.5t  
and y  10,000e1.0397t 0 4

500,000

Now Try Exercise 9 ■

■ Radioactive Decay
Radioactive substances decay by spontaneously emitting radiation. The rate of decay is 
proportional to the mass of the substance. This is analogous to population growth except that 
the mass decreases. Physicists express the rate of decay in terms of half-life, the time it takes 
for a sample of the substance to decay to half its original mass. For example, the half-life of 
radium-226 is 1600 years, so a 100-g sample decays to 50 g Aor 12  100 gB  in 1600 years, 
then to 25 g Aor 12 

1
2  100 gB  in 3200 years, and so on. In general, for a radioactive 

substance with mass m0 and half-life h, the amount remaining at time t is modeled by

m1 t 2  m02t/h

where h and t are measured in the same time units (minutes, hours, days, years, and so on). 
To express this model in the form m1 t 2  m0ert, we need to !nd the relative decay 

rate r. Since h is the half-life, we have

 m1 t 2  m0ert     Model

 
m0

2
 m0erh    h is the half-life

 
1
2
 erh     Divide by m0

 ln 
1
2
 rh     Take ln of each side

 r 
ln 2

h
    Solve for r

This last equation allows us to find the relative decay rate r from the half-life h.

The half-lives of radioactive elements 
vary from very long to very short. Here 
are some examples.

Element Half-life

Thorium-232 14.5 billion years
Uranium-235 4.5 billion years
Thorium-230 80,000 years
Plutonium-239 24,360 years
Carbon-14 5,730 years
Radium-226 1,600 years
Cesium-137 30 years
Strontium-90 28 years
Polonium-210 140 days
Thorium-234 25 days
Iodine-135 8 days
Radon-222 3.8 days
Lead-211 3.6 minutes
Krypton-91 10 seconds

DISCOVERY PROJECT

Modeling Radiation with Coins and Dice

Radioactive elements decay when their atoms spontaneously emit radiation  
and change into smaller, stable atoms. But if atoms decay randomly, how is  
it possible to !nd a function that models their behavior? We’ll try to answer  
this question by experimenting with randomly tossing coins and rolling dice. 
The experiments allow us to experience how a very large number of random 
events can result in predictable exponential results. You can !nd the project at 
www.stewartmath.com.
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376 CHAPTER 4 ■ Exponential and Logarithmic Functions

RADIOACTIVE DECAY MODEL

If m0 is the initial mass of a radioactive substance with half-life h, then the 
mass remaining at time t is modeled by the function

m1 t 2  m0ert

where r 
ln 2

h
 is the relative decay rate.

EXAMPLE 6 ■ Radioactive Decay
Polonium-210 1 210Po 2  has a half-life of 140 days. Suppose a sample of this  
substance has a mass of 300 mg.

(a)  Find a function m1 t 2  m02t/h that models the mass remaining after  
t days.

(b)  Find a function m1 t 2  m0ert that models the mass remaining after  
t days.

(c) Find the mass remaining after one year.

(d) How long will it take for the sample to decay to a mass of 200 mg?

(e) Draw a graph of the sample mass as a function of time.

SOLUTION

(a)  We have m0  300 and h  140, so the amount remaining after t days is

m1 t 2  300 # 2t/140

(b)  We have m0  300 and r  ln 2/140 < 0.00495, so the amount remaining 
after t days is

m1 t 2  300 # e0.00495t

(c) We use the function we found in part (a) with t  365 (1 year):

m1365 2  300e0.0049513652 < 49.256

  Thus approximately 49 mg of 210Po remains after 1 year.

(d)  We use the function that we found in part (b) with m1 t 2  200 and solve the 
resulting exponential equation for t:

 300e0.00495t  200   m1 t 2  m0 ert

 e0.00495t  2
3   Divide by 300

 ln e0.00495t  ln 23   Take ln of each side

 0.00495t  ln 23   Property of ln

 t   

ln 23
0.00495

  Solve for t

 t < 81.9   Calculator

  The time required for the sample to decay to 200 mg is about 82 days.

(e)  We can graph the model in part (a) or the one in part (b). The graphs are identi-
cal. See Figure 6.

Now Try Exercise 17 ■

In parts (c) and (d) we can also use the 
model found in part (a). Check that the 
result is the same using either model.
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FIGURE 6
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SECTION 4.6 ■ Modeling with Exponential Functions 377

■ Newton’s Law of Cooling
Newton’s Law of Cooling states that the rate at which an object cools is proportional to 
the temperature difference between the object and its surroundings, provided that the 
temperature difference is not too large. By using calculus, the following model can be 
deduced from this law.

NEWTON’S LAW OF COOLING

If D0 is the initial temperature difference between an object and its surround-
ings, and if its surroundings have temperature Ts, then the temperature of the 
object at time t is modeled by the function

T1 t 2  Ts  D0ekt

where k is a positive constant that depends on the type of object.

EXAMPLE 7 ■ Newton’s Law of Cooling
A cup of coffee has a temperature of 200F and is placed in a room that has a temper-
ature of 70F. After 10 min the temperature of the coffee is 150F.

(a)  Find a function that models the temperature of the coffee at time t.

(b) Find the temperature of the coffee after 15 min.

(c)  After how long will the coffee have cooled to 100F?

(d)  Illustrate by drawing a graph of the temperature function.

SOLUTION

(a)  The temperature of the room is Ts  70F, and the initial temperature  
difference is

D0  200  70  130°F

   So by Newton’s Law of Cooling, the temperature after t minutes is modeled by 
the function

T1 t 2  70  130ekt

     We need to find the constant k associated with this cup of coffee. To do  
this, we use the fact that when t  10, the temperature is T110 2  150. So  
we have

 70  130e10k  150   Ts  D0ekt  T1 t 2
 130e10k  80   Subtract 70

 e10k  8
13   Divide by 130

 10k  ln 8
13   Take ln of each side

 k   
1

10  ln 8
13  Solve for k

 k < 0.04855   Calculator

  Substituting this value of k into the expression for T1 t 2 , we get

T1 t 2  70  130e0.04855t

(b) We use the function that we found in part (a) with t  15.

T115 2  70  130e0.048551152 < 133°F
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Radioactive Waste
Harmful radioactive isotopes are pro-
duced whenever a nuclear reaction 
occurs, whether as the result of an atomic 
bomb test, a nuclear accident such as the 
one at Fukushima Daiichi in 2011, or the 
uneventful production of electricity at a 
nuclear power plant.

One radioactive material that is pro-
duced in atomic bombs is the isotope 
strontium-90 1 90Sr2, with a half-life of  
28 years. This is deposited like calcium in 
human bone tissue, where it can cause 
leukemia and other cancers. However, in 
the decades since atmospheric testing of 
nuclear weapons was halted, 90Sr levels in 
the environment have fallen to a level that 
no longer poses a threat to health.

Nuclear power plants produce 
 radioactive plutonium-239 1239Pu2, which 
has a half-life of 24,360 years. Because of 
its long half-life, 239Pu could pose a threat 
to the environment for thousands of years. 
So great care must be taken to dispose of 
it properly. The difficulty of ensuring the 
safety of the disposed radioactive waste is 
one reason that nuclear power plants 
remain controversial.
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378 CHAPTER 4 ■ Exponential and Logarithmic Functions

(c)  We use the function that we found in part (a) with T1 t 2  100 and solve the 
resulting exponential equation for t.

 70  130e0.04855t  100   Ts  D0ekt  T1 t 2
 130e0.04855t  30   Subtract 70

 e0.04855t  3
13   Divide by 130

 0.04855t  ln 3
13   Take ln of each side

 t 
ln 3

13

0.04855
  Solve for t

 t < 30.2   Calculator

  The coffee will have cooled to 100F after about half an hour.

(d)  The graph of the temperature function is sketched in Figure 7. Notice that the line  
t  70 is a horizontal asymptote. (Why?)

Now Try Exercise 25 ■

T=70+130e_0.04855t

70

0 10 20 30 40

200

T=70

t (min)

T (˚F)

FIGURE 7 Temperature of coffee  
after t minutes

APPLICATIONS
1–16 ■ Population Growth  These exercises use the population 
growth model.

 1. Bacteria Culture  A certain culture of the bacterium Strepto-
coccus A initially has 10 bacteria and is observed to double 
every 1.5 hours.
(a)  Find an exponential model n1 t 2  n0 2t/a for the number 

of bacteria in the culture after t hours.
(b) Estimate the number of bacteria after 35 hours.
(c) After how many hours will the bacteria count reach 

10,000?
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Streptococcus A  112,000  magnification 2
 2. Bacteria Culture  A certain culture of the bacterium Rhodo-

bacter sphaeroides initially has 25 bacteria and is observed to 
double every 5 hours.

(a)  Find an exponential model n1 t 2  n0 2t/a for the number 
of bacteria in the culture after t hours.

(b) Estimate the number of bacteria after 18 hours.
(c)  After how many hours will the bacteria count reach  

1 million?

 3. Squirrel Population  A grey squirrel population was intro-
duced in a certain county of Great Britain 30 years ago.  
Biologists observe that the population doubles every 6 years, 
and now the population is 100,000.
(a) What was the initial size of the squirrel population?
(b) Estimate the squirrel population 10 years from now.
(c) Sketch a graph of the squirrel population.

 4. Bird Population  A certain species of bird was introduced in 
a certain county 25 years ago.  Biologists observe that the 
population doubles every 10 years, and now the population is 
13,000.
(a) What was the initial size of the bird population?
(b) Estimate the bird population 5 years from now.
(c) Sketch a graph of the bird population.

 5. Fox Population  The fox population in a certain region has a 
relative growth rate of 8% per year. It is estimated that the 
population in 2013 was 18,000.
(a)  Find a function n1 t 2  n0 ert that models the population  

t years after 2013.
(b)  Use the function from part (a) to estimate the fox popula-

tion in the year 2021.
(c)  After how many years will the fox population reach 

25,000?
(d)  Sketch a graph of the fox population function for the 

years 2013–2021.

4.6 EXERCISES
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SECTION 4.6 ■ Modeling with Exponential Functions 379

 6. Fish Population  The population of a certain species of !sh 
has a relative growth rate of 1.2% per year. It is estimated 
that the population in 2010 was 12 million. 
(a)  Find an exponential model n1 t 2  n0 ert for the popula-

tion t years after 2010.
(b) Estimate the !sh population in the year 2015.
(c)  After how many years will the !sh population reach  

14 million?
(d) Sketch a graph of the !sh population.

 7. Population of a Country  The population of a country has a 
relative growth rate of 3% per year. The government is trying 
to reduce the growth rate to 2%. The population in 2011 was 
approximately 110 million. Find the projected population for 
the year 2036 for the following conditions.
(a) The relative growth rate remains at 3% per year.
(b) The relative growth rate is reduced to 2% per year.

 8. Bacteria Culture  It is observed that a certain bacteria culture 
has a relative growth rate of 12% per hour, but in the presence 
of an antibiotic the relative growth rate is reduced to 5% per 
hour.  The initial number of bacteria in the culture is 22. Find 
the projected population after 24 hours for the following 
conditions.
(a)  No antibiotic is present, so the relative growth rate  

is 12%.
(b)  An antibiotic is present in the culture, so the relative 

growth rate is reduced to 5%.

 9. Population of a City  The population of a certain city was 
112,000 in 2014, and the observed doubling time for the pop-
ulation is 18 years. 
(a)  Find an exponential model n1 t 2  n0 2t/a for the popula-

tion t years after 2014.
(b)  Find an exponential model n1 t 2  n0 ert for the popula-

tion t years after 2014.
(c) Sketch a graph of the population at time t.
(d) Estimate how long it takes the population to reach 

500,000.

 10. Bat Population  The bat population in a certain Midwestern 
county was 350,000 in 2012, and the observed doubling time 
for the population is 25 years. 
(a)  Find an exponential model n1 t 2  n0 2t/a for the popula-

tion t years after 2012.
(b)  Find an exponential model n1 t 2  n0 ert for the popula-

tion t years after 2012.
(c) Sketch a graph of the population at time t.
(d) Estimate how long it takes the population to reach  

2 million.

 11. Deer Population  The graph shows the deer population in a 
Pennsylvania county between 2010 and 2014. Assume that 
the population grows exponentially.
(a) What was the deer population in 2010?
(b)  Find a function that models the deer population t years 

 after 2010.
(c) What is the projected deer population in 2018?

(d) Estimate how long it takes the population to reach 
100,000.

Deer
population

0 1 2 43

10,000

t

n(t)

20,000

30,000
(4, 31,000)

Years since 2010

 12. Frog Population  Some bullfrogs were introduced into a small 
pond.  The graph shows the bullfrog population for the next few 
years.  Assume that the population grows exponentially.
(a) What was the initial bullfrog population?
(b)  Find a function that models the bullfrog population  

t years since the bullfrogs were put into the pond.
(c) What is the projected bullfrog population after  

15 years?
(d) Estimate how long it takes the population to reach 

75,000.

400
500

300
200
100

2 3 40 t

700

(2, 225)

600
Frog

population

n

51 6

13. Bacteria Culture  A culture starts with 8600 bacteria. After  
1 hour the count is 10,000.
(a)  Find a function that models the number of bacteria n1 t 2   

after t hours.
(b) Find the number of bacteria after 2 hours.
(c)  After how many hours will the number of bacteria 

double?

 14. Bacteria Culture  The count in a culture of bacteria was 400 
after 2 hours and 25,600 after 6 hours.
(a)  What is the relative rate of growth of the bacteria popula-

tion? Express your answer as a percentage.
(b) What was the initial size of the culture?
(c)  Find a function that models the number of bacteria n1 t 2  

 after t hours.
(d) Find the number of bacteria after 4.5 hours.
(e)  After how many hours will the number of bacteria reach 

50,000?
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380 CHAPTER 4 ■ Exponential and Logarithmic Functions

 15. Population of California  The population of California was 
29.76 million in 1990 and 33.87 million in 2000. Assume 
that the population grows exponentially.
(a)  Find a function that models the population t years after 

1990.
(b) Find the time required for the population to double.
(c)  Use the function from part (a) to predict the population 

of  California in the year 2010. Look up California’s 
actual population in 2010, and compare.

 16. World Population  The population of the world was  
7.1 billion in 2013, and the observed relative growth rate was 
1.1% per year.
(a) Estimate how long it takes the population to double.
(b) Estimate how long it takes the population to triple.

17–24 ■ Radioactive Decay  These exercises use the radioactive 
decay model.

 17. Radioactive Radium  The half-life of radium-226 is 1600 
years. Suppose we have a 22-mg sample.
(a)  Find a function m1 t 2  m0 2t/h

 that models the mass 
remaining after t years.

(b)  Find a function m1 t 2  m0 ert that models the mass 
remaining after t years.

(c) How much of the sample will remain after 4000 years?
(d)  After how many years will only 18 mg of the sample  

remain?

18. Radioactive Cesium  The half-life of cesium-137 is  
30 years. Suppose we have a 10-g sample.
(a)  Find a function m1 t 2  m0 2t/h

 that models the mass 
remaining after t years.

(b)  Find a function m1 t 2  m0 ert that models the mass 
remaining after t years.

(c) How much of the sample will remain after 80 years?
(d) After how many years will only 2 g of the sample 

remain?

 19. Radioactive Strontium  The half-life of strontium-90 is  
28 years. How long will it take a 50-mg sample to decay to a 
mass of 32 mg?

 20. Radioactive Radium  Radium-221 has a half-life of 30 s. 
How long will it take for 95% of a sample to decay?

 21. Finding Half-Life  If 250 mg of a radioactive element decays 
to 200 mg in 48 hours, find the half-life of the element.

 22. Radioactive Radon  After 3 days a sample of radon-222 has 
decayed to 58% of its original amount.
(a) What is the half-life of radon-222?
(b)  How long will it take the sample to decay to 20% of its 

original amount?

 23. Carbon-14 Dating  A wooden artifact from an ancient  
tomb contains 65% of the carbon-14 that is present in living 
trees. How long ago was the artifact made? (The half-life of 
carbon-14 is 5730 years.)

 24. Carbon-14 Dating  The burial cloth of an Egyptian mummy 
is estimated to contain 59% of the carbon-14 it contained 
originally. How long ago was the mummy buried? (The half-
life of carbon-14 is 5730 years.)

25–28 ■ Law of Cooling  These exercises use Newton’s Law of 
Cooling.

 25. Cooling Soup  A hot bowl of soup is served at a dinner 
party. It starts to cool according to Newton’s Law of Cooling, 
so its temperature at time t is given by

   T1 t 2  65  145e0.05t

  where t is measured in minutes and T is measured in F.
(a) What is the initial temperature of the soup?
(b) What is the temperature after 10 min?
(c) After how long will the temperature be 100F?

 26. Time of Death  Newton’s Law of Cooling is used in homicide 
investigations to determine the time of death. The normal 
body temperature is 98.6 F. Immediately following death, the 
body begins to cool. It has been determined experimentally 
that the constant in Newton’s Law of Cooling is approxi-
mately k  0.1947, assuming that time is measured in hours. 
Suppose that the temperature of the surroundings is 60F.
(a)  Find a function T 1 t 2  that models the temperature t hours 

after death.
(b)  If the temperature of the body is now 72F, how long ago 

was the time of death?

 27. Cooling Turkey  A roasted turkey is taken from an oven 
when its temperature has reached 185F and is placed on a 
table in a room where the temperature is 75F.
(a)  If the temperature of the turkey is 150F after half an 

hour, what is its temperature after 45 min?
(b) After how many hours will the turkey cool to 100F?

 28. Boiling Water  A kettle full of water is brought to a boil in a 
room with temperature 20C. After 15 min the temperature of 
the water has decreased from 100C to 75C. Find the tem-
perature after another 10 min. Illustrate by graphing the tem-
perature function.
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