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I = I(t) (in amperes, A) ¢ seconds after the switch is closed (b) For a pole-vaulter in training, the learning curve is
is 1 =91 — ), given by
(a) Use this equation to express the time 7 as a function of P(1) = 20 — 14¢ 002

the current /.

where P(¢) is the height he is able to pole-vault after

t months. After how many months of training is he able
to vault 12 ft?

% (c¢) Draw a graph of the learning curve in part (b).

(b) After how many seconds is the current 2 A?

13Q

DISCUSS DISCOVER PROVE WRITE
T~ 103. DISCUSS: Estimating a Solution Without actually solving
o . .
Switch the equation, find two whole numbers between which the

solution of 9* = 20 must lie. Do the same for 9* = 100.

102. Learning Curve A learning curve is a graph of a function Explain how you reached your conclusions.

P(t) that measures the performance of someone learning a 104. DISCUSS = DISCOVER: A Surprising Equation Take loga-
skill as a function of the training time . At first, the rate of rithms to show that the equation

learning is rapid. Then, as performance increases and
approaches a maximal value M, the rate of learning
decreases. It has been found that the function

xl/logx =5

has no solution. For what values of k does the equation
P(t) =M - Ceikt xl/logx =k

where k and C are positive constants and C < M is a rea-

have a solution? What does this tell us about the graph of
sonable model for learning.

the function f(x) = x'/°¢*2 Confirm your answer using a
(a) Express the learning time 7 as a function of the per- graphing device.

formance level P.
105. DISCUSS: Disguised Equations Each of these equations

can be transformed into an equation of linear or quadratic
type by applying the hint. Solve each equation.
(@ (x— 1) D =100(x — 1)
[Hint: Take log of each side.]
(b) log, x + log, x + loggx = 11
[Hint: Change all logs to base 2.]
(¢) 4—2"1=3
[Hint: Write as a quadratic in 2*.]

MODELING WITH EXPONENTIAL FUNCTIONS

Exponential Growth (Doubling Time) Exponential Growth (Relative Growth Rate)
Radioactive Decay Newton’s Law of Cooling

Many processes that occur in nature, such as population growth, radioactive decay, heat
diffusion, and numerous others, can be modeled by using exponential functions. In this
section we study exponential models.

Exponential Growth (Doubling Time)

Suppose we start with a single bacterium, which divides every hour. After one hour we
have 2 bacteria, after two hours we have 22 or 4 bacteria, after three hours we have 2°
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SECTION 4.6 = Modeling with Exponential Functions 371

or 8 bacteria, and so on (see Figure 1). We see that we can model the bacteria population
after ¢ hours by f(¢) = 2'.

CLLLLOE

FIGURE 1 Bacteria population

If we start with 10 of these bacteria, then the population is modeled by f(¢) = 10-2".
A slower-growing strain of bacteria doubles every 3 hours; in this case the population
is modeled by f(¢) = 10-2"3. In general, we have the following.

EXPONENTIAL GROWTH (DOUBLING TIME)

If the initial size of a population is n, and the doubling time is a, then the size
of the population at time ¢ is

n(t) = ny2!

where a and ¢ are measured in the same time units (minutes, hours, days, years,
and so on).

EXAMPLE 1 = Bacteria Population

Under ideal conditions a certain bacteria population doubles every three hours. Ini-
tially, there are 1000 bacteria in a colony.

(a) Find a model for the bacteria population after ¢ hours.

(b) How many bacteria are in the colony after 15 hours?

(c) After how many hours will the bacteria count reach 100,000?
SOLUTION

(a) The population at time # is modeled by

n(t) = 1000273

where ¢ is measured in hours.
(b) After 15 hours the number of bacteria is

n(15) = 1000293 = 32,000

(c) We set n(¢) = 100,000 in the model that we found in part (a) and solve the
resulting exponential equation for 7.

100,000 = 1000 - 273 n(t) = 1000 - 23
100 = 273 Divide by 1000
log 100 = log 23 Take log of each side
t
2= 3 log 2 Properties of log
6 :
t ~ 19.93 Solve for ¢

N log 2
The bacteria level reaches 100,000 in about 20 hours.

®. Now Try Exercise 1 |

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



372 CHAPTER4 = Exponential and Logarithmic Functions

EXAMPLE 2 = Rabbit Population

A certain breed of rabbit was introduced onto a small island 8 months ago. The
current rabbit population on the island is estimated to be 4100 and doubling every
3 months.

(a) What was the initial size of the rabbit population?
(b) Estimate the population 1 year after the rabbits were introduced to the island.

(c) Sketch a graph of the rabbit population.
SOLUTION

(a) The doubling time is a = 3, so the population at time ¢ is
n(t) = ng2”  Model

where n, is the initial population. Since the population is 4100 when ¢ is
8 months, we have

n(8) = }1028/3 From model

4100 = ny2¥®  Because n(8) = 4100

4100 . 83 . .
nyg = Divide by 2% and switch sides
28/3
n, =~ 645 Calculator

Thus we estimate that 645 rabbits were introduced onto the island.

(b) From part (a) we know that the initial population is n, = 645, so we can model
the population after  months by

n(t) = 645-2%  Model
After 1 year t = 12, so
n(12) = 64523 = 10,320
So after 1 year there would be about 10,000 rabbits.

(c) We first note that the domain is = 0. The graph is shown in Figure 2.

20,000

0 20
FIGURE 2 n(r) = 645-273

® . Now Try Exercise 3 |

Exponential Growth (Relative Growth Rate)

We have used an exponential function with base 2 to model population growth (in terms
of the doubling time). We could also model the same population with an exponential
function with base 3 (in terms of the tripling time). In fact, we can find an exponential

The growth of a population with rela- model with any base. If we use the base e, we get a population model in terms of the
tive growth rate r is analogous to the relative growth rate r: the rate of population growth expressed as a proportion of the
growth of an investment with continu-  population at any time. In this case r is the “instantaneous” growth rate. (In calculus
ously compounded interest rate r. the concept of instantaneous rate is given a precise meaning.) For instance, if » = 0.02,

then at any time ¢ the growth rate is 2% of the population at time 7.
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SECTION 4.6 = Modeling with Exponential Functions 373

EXPONENTIAL GROWTH (RELATIVE GROWTH RATE)

A population that experiences exponential growth increases according to the
model

n(t) = nge’
where n(t) = population at time ¢

ny = initial size of the population

r = relative rate of growth (expressed as a proportion of the
population)
t = time

Notice that the formula for population growth is the same as that for continuously
compounded interest. In fact, the same principle is at work in both cases: The growth
of a population (or an investment) per time period is proportional to the size of
the population (or the amount of the investment). A population of 1,000,000 will
increase more in one year than a population of 1000; in exactly the same way, an
investment of $1,000,000 will increase more in one year than an investment of
$1000.

In the following examples we assume that the populations grow exponentially.

EXAMPLE 3 = Predicting the Size of a Population

The initial bacterium count in a culture is 500. A biologist later makes a sample
count of bacteria in the culture and finds that the relative rate of growth is 40%
per hour.

(a) Find a function that models the number of bacteria after ¢ hours.

(b) What is the estimated count after 10 hours?

(c) After how many hours will the bacteria count reach 80,0007

(d) Sketch a graph of the function n(z).

SOLUTION

(a) We use the exponential growth model with n, = 500 and r = 0.4 to get

n(t) = 500"

where ¢ is measured in hours.

(b) Using the function in part (a), we find that the bacterium count after 10 hours is
n(10) = 500419 = 500¢* ~ 27,300

(c) We set n(t) = 80,000 and solve the resulting exponential equation for 7.

5000 80,000 = 500 - &% n(t) = 500 - &
160 = ¥ Divide by 500
In 160 = 0.4¢ Take In of each side
_In 160

~ 12.68 Solve for t

. 0.4
500 -
0 B 6 The bacteria level reaches 80,000 in about 12.7 hours.
FIGURE 3 (d) The graph is shown in Figure 3.
. Now Try Exercise 5 [ |
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374 CHAPTER4

The relative growth of world popula-
tion has been declining over the past
few decades—from 2% in 1995 to
1.1% in 2013.

Standing Room Only

The population of the world was about
6.1 billion in 2000 and was increasing at
1.4% per year. Assuming that each per-
son occupies an average of 4 ft? of the
surface of the earth, the exponential
model for population growth projects
that by the year 2801 there will be stand-
ing room only! (The total land surface
area of the world is about 1.8 X 10" ft%)

30

n(t) = 6.1001
o 100
FIGURE 4

Exponential and Logarithmic Functions

EXAMPLE 4

In 2000 the population of the world was 6.1 billion, and the relative rate of growth
was 1.4% per year. It is claimed that a rate of 1.0% per year would make a significant
difference in the total population in just a few decades. Test this claim by estimating
the population of the world in the year 2050 using a relative rate of growth of
(a) 1.4% per year and (b) 1.0% per year.

Graph the population functions for the next 100 years for the two relative growth
rates in the same viewing rectangle.

Comparing Different Rates of Population Growth

SOLUTION

(a) By the exponential growth model we have
n(t) = 6.1%01%

where n(?) is measured in billions and ¢ is measured in years since 2000. Because
the year 2050 is 50 years after 2000, we find

n(50) = 6.1¢°01400 = 6.1¢%7 = 12.3

The estimated population in the year 2050 is about 12.3 billion.
(b) We use the function

n(t) = 6.1%01"
and find
n(50) = 6.1%91°60 = 6,10 =~ 10.1

The estimated population in the year 2050 is about 10.1 billion.

The graphs in Figure 4 show that a small change in the relative rate of growth will,
over time, make a large difference in population size.

®. Now Try Exercise 7 |

EXAMPLE 5

A culture starts with 10,000 bacteria, and the number doubles every 40 minutes.

Expressing a Model in Terms of e

(a) Find a function n(t) = n, 2% that models the number of bacteria after ¢ hours.
(b) Find a function n(r) = nye” that models the number of bacteria after # hours.
(¢) Sketch a graph of the number of bacteria at time .

SOLUTION

(a) The initial population is 7, = 10,000. The doubling time is ¢ = 40 min = 2/3 h.
Since 1/a = 3/2 = 1.5, the model is

n(t) = 10,000 2"

(b) The initial population is n, = 10,000. We need to find the relative growth rate r.
Since there are 20,000 bacteria when ¢ = 2/3 h, we have

20,000 = 10,000e"?
2 = M)

n(r) = 10,000¢"
Divide by 10,000
In2 = Ine®?
In2 = r(2/3)
3In2

=

Take In of each side

Property of In

~ 1.0397

Solve for r

Now that we know the relative growth rate r, we can find the model:

n(t) = 10,000¢" 037

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 4.6 = Modeling with Exponential Functions 375

(¢) We can graph the model in part (a) or the one in part (b). The graphs are identi-
cal. See Figure 5.

500,000

FIGURE 5 Graphs of y = 10,000 - 2"
_ 1.0397 4
and y = 10,000e 0

® . Now Try Exercise 9 |

Radioactive Decay

Radioactive substances decay by spontaneously emitting radiation. The rate of decay is

The half-lives of radioactive elements proportional to the mass of the substance. This is analogous to population growth except that

vl i el 8o iy el el the mass decreases. Physicists express the rate of decay in terms of half-life, the time it takes
are some examples. . . . .

Element Half-life for a sample of the substance to decay to half its original mass. For example, the half-life of

radium-226 is 1600 years, so a 100-g sample decays to 50 g (or% X 100 g) in 1600 years,

Thorium-232 14.5 billion years then to 25 g (or X 3% 100 g) in 3200 years, and so on. In general, for a radioactive

%:Z?'”::;:g ;gob(;gio:a{sars substance with mass m,, and half-life /, the amount remaining at time ¢ is modeled by
jum- l y
Plutonium-239 24,360 years
Carbon-14 5,730 years _ —tfh
Radium-226 1,600 years m(1) = mq2
Cesium-137 30 years
igl‘; r:]:tj::zg 10 7 ﬁg Z:,SS where 4 and ¢ are measured in the same time units (minutes, hours, days, years, and so on).
Thorium-234 25idays To express this model in the form m(r) = mye”, we need to find the relative decay
lodine-135 8 days rate r. Since £ is the half-life, we have
Radon-222 3.8 days _ -
Lead-211 3.6 minutes m(t) = mye Model
Krypton-91 10 seconds m o . o
7 = mye h is the half-life
1 —rh P
E =e Divide by m,
In E = —rh Take In of each side
In2 ‘
r = 7}1 Solve for r

This last equation allows us to find the relative decay rate r from the half-life A.

DISCOVERY PROJECT
Modeling Radiation with Coins and Dice

Radioactive elements decay when their atoms spontaneously emit radiation
and change into smaller, stable atoms. But if atoms decay randomly, how is

it possible to find a function that models their behavior? We’ll try to answer
this question by experimenting with randomly tossing coins and rolling dice.
The experiments allow us to experience how a very large number of random
events can result in predictable exponential results. You can find the project at
www.stewartmath.com.
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376 CHAPTER4 = Exponential and Logarithmic Functions

RADIOACTIVE DECAY MODEL

If m, is the initial mass of a radioactive substance with half-life %, then the
mass remaining at time ¢ is modeled by the function

rt

m(t) = moe

In2
where r = e is the relative decay rate.

EXAMPLE 6 = Radioactive Decay

Polonium-210 (*'°Po) has a half-life of 140 days. Suppose a sample of this
substance has a mass of 300 mg.

(a) Find a function m(r) = my2~"" that models the mass remaining after
t days.

(b) Find a function m(t) = mye " that models the mass remaining after
t days.

(¢) Find the mass remaining after one year.
(d) How long will it take for the sample to decay to a mass of 200 mg?

(e) Draw a graph of the sample mass as a function of time.

SOLUTION

(a) We have m, = 300 and & = 140, so the amount remaining after ¢ days is
m(t) = 300.27"140

(b) We have m, = 300 and r = In 2/140 =~ —0.00495, so the amount remaining
after ¢ days is

m(t) — 300.6*00049&

In parts (c) and (d) we can also use the ~ (¢) We use the function we found in part (a) with r = 365 (1 year):

model found in part (a). Check that the _ —0.00495(365)
result is the same using either model. m(365) = 300e ~ 49.256

Thus approximately 49 mg of !°Po remains after 1 year.

(d) We use the function that we found in part (b) with m(7) = 200 and solve the
resulting exponential equation for #:

300e %0045 = 200 m(t) = mye™ "
m(t) A
e 000495 = 2 Divide by 300
= 1
£ 300+ In e 00 = In 2 Take In of each side
o
§" i m(t) = 300 e0.00495 —0.00495¢ = ln§ Property of In
5 200 5
R t I Solve for r
= = - D0lve 10r
g 100+ 0.00495
< T t=81.9 Calculator
0 50 150 1 The time required for the sample to decay to 200 mg is about 82 days.
Time (days) (e) We can graph the model in part (a) or the one in part (b). The graphs are identi-
FIGURE 6 cal. See Figure 6.

® . Now Try Exercise 17 |
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Radioactive Waste

Harmful radioactive isotopes are pro-
duced whenever a nuclear reaction
occurs, whether as the result of an atomic
bomb test, a nuclear accident such as the
one at Fukushima Daiichi in 2011, or the
uneventful production of electricity at a
nuclear power plant.

One radioactive material that is pro-
duced in atomic bombs is the isotope
strontium-90 (°°Sr), with a half-life of
28 years. This is deposited like calcium in
human bone tissue, where it can cause
leukemia and other cancers. However, in
the decades since atmospheric testing of
nuclear weapons was halted, *°Sr levels in
the environment have fallen to a level that
no longer poses a threat to health.

Nuclear power plants produce
radioactive plutonium-239 (*°Pu), which
has a half-life of 24,360 years. Because of
its long half-life, °Pu could pose a threat
to the environment for thousands of years.
So great care must be taken to dispose of
it properly. The difficulty of ensuring the
safety of the disposed radioactive waste is
one reason that nuclear power plants
remain controversial.
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Newton’s Law of Cooling

Newton’s Law of Cooling states that the rate at which an object cools is proportional to
the temperature difference between the object and its surroundings, provided that the
temperature difference is not too large. By using calculus, the following model can be
deduced from this law.

NEWTON’S LAW OF COOLING

If D, is the initial temperature difference between an object and its surround-
ings, and if its surroundings have temperature 7, then the temperature of the
object at time ¢ is modeled by the function

T(t) = T, + Dye ™

where k is a positive constant that depends on the type of object.

EXAMPLE 7

A cup of coffee has a temperature of 200°F and is placed in a room that has a temper-
ature of 70°F. After 10 min the temperature of the coffee is 150°F.

(a) Find a function that models the temperature of the coffee at time 7.

Newton’s Law of Cooling

(b) Find the temperature of the coffee after 15 min.

(¢) After how long will the coffee have cooled to 100°F?

(d) Illustrate by drawing a graph of the temperature function.
SOLUTION

(a) The temperature of the room is 7, = 70°F, and the initial temperature
difference is

Dy = 200 — 70 = 130°F

So by Newton’s Law of Cooling, the temperature after f minutes is modeled by
the function

T(t) = 70 + 130e "

We need to find the constant k associated with this cup of coffee. To do
this, we use the fact that when 7 = 10, the temperature is 7(10) = 150. So
we have

70 + 130e 1% = 150 T, + Dye ™ = T(1)

130e'% = 80 Subtract 70
e 1k =% Divide by 130
—10k = In & Take In of each side
k= —75In< Solve for k
k = 0.04855 Calculator

Substituting this value of & into the expression for 7(z), we get
T(t) = 70 + 130 00485
(b) We use the function that we found in part (a) with 7 = 15.
T(15) = 70 + 130e %0505 ~ 133°F
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T(F) A

2001

701 ————————

T=70+ 1306_0‘04855[

0 10 20 30

40 ¢ (min)

FIGURE 7 Temperature of coffee

after ¢ minutes

4.6 EXERCISES

APPLICATIONS

(c) We use the function that we found in part (a) with 7(¢) = 100 and solve the
resulting exponential equation for ¢.

70 + 130e 004855 = 100 T, + Dye ™™ = T(1)

130e 04855 = 30 Subtract 70

o 0048 = 3 Divide by 130
—0.04855t = In 5 Take In of each side
In
t=———— Solve for ¢
—0.04855
t = 30.2 Calculator

The coffee will have cooled to 100°F after about half an hour.

(d) The graph of the temperature function is sketched in Figure 7. Notice that the line
t = 70 is a horizontal asymptote. (Why?)

® . Now Try Exercise 25 |

(a) Find an exponential model n(r) = ny2"* for the number
of bacteria in the culture after  hours.

1-16 = Population Growth These exercises use the population

growth model.

® . 1. Bacteria Culture A certain culture of the bacterium Strepto-

(b) Estimate the number of bacteria after 18 hours.

(¢) After how many hours will the bacteria count reach
1 million?

coccus A initially has 10 bacteria and is observed to double

every 1.5 hours.

(a) Find an exponential model n(7) = ny2" for the number
of bacteria in the culture after  hours.

(b) Estimate the number of bacteria after 35 hours.
(¢) After how many hours will the bacteria count reach

10,000?

© Sebastian Kaulitzki/Shutterstock.com

Streptococcus A

4

~ 3. Squirrel Population A grey squirrel population was intro-
duced in a certain county of Great Britain 30 years ago.
Biologists observe that the population doubles every 6 years,
and now the population is 100,000.

(a) What was the initial size of the squirrel population?
(b) Estimate the squirrel population 10 years from now.
(c) Sketch a graph of the squirrel population.
4. Bird Population A certain species of bird was introduced in
a certain county 25 years ago. Biologists observe that the

population doubles every 10 years, and now the population is
13,000.

(a) What was the initial size of the bird population?
(b) Estimate the bird population 5 years from now.
(c) Sketch a graph of the bird population.

? 4

~ 5. Fox Population The fox population in a certain region has a
relative growth rate of 8% per year. It is estimated that the
population in 2013 was 18,000.

(a) Find a function n(t) = nye” that models the population
t years after 2013.
(b) Use the function from part (a) to estimate the fox popula-

(12,000 X magnification) tion in the year 2021.
(c) After how many years will the fox population reach
2. Bacteria Culture A certain culture of the bacterium Rhodo- 25,000?
bacter sphaeroides initially has 25 bacteria and is observed to (d) Sketch a graph of the fox population function for the

double every 5 hours.

years 2013-2021.
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. Fish Population The population of a certain species of fish
has a relative growth rate of 1.2% per year. It is estimated
that the population in 2010 was 12 million.

(a) Find an exponential model n(r) = nye’ for the popula-
tion ¢ years after 2010.

(b) Estimate the fish population in the year 2015.

(c) After how many years will the fish population reach
14 million?

(d) Sketch a graph of the fish population.

. Population of a Country The population of a country has a
relative growth rate of 3% per year. The government is trying
to reduce the growth rate to 2%. The population in 2011 was
approximately 110 million. Find the projected population for
the year 2036 for the following conditions.

(a) The relative growth rate remains at 3% per year.
(b) The relative growth rate is reduced to 2% per year.

. Bacteria Culture It is observed that a certain bacteria culture
has a relative growth rate of 12% per hour, but in the presence
of an antibiotic the relative growth rate is reduced to 5% per
hour. The initial number of bacteria in the culture is 22. Find
the projected population after 24 hours for the following
conditions.

(a) No antibiotic is present, so the relative growth rate
is 12%.

(b) An antibiotic is present in the culture, so the relative
growth rate is reduced to 5%.

< 9. Population of a City The population of a certain city was

10.

11.

112,000 in 2014, and the observed doubling time for the pop-

ulation is 18 years.

(a) Find an exponential model n(7) = n, 2/ for the popula-
tion ¢ years after 2014.

(b) Find an exponential model n(t) = nye” for the popula-
tion ¢ years after 2014.

(c) Sketch a graph of the population at time 7.

(d) Estimate how long it takes the population to reach
500,000.

Bat Population The bat population in a certain Midwestern

county was 350,000 in 2012, and the observed doubling time

for the population is 25 years.

(a) Find an exponential model n(7) = ny2"* for the popula-
tion ¢ years after 2012.

(b) Find an exponential model n(t) = nye” for the popula-
tion ¢ years after 2012.

(c) Sketch a graph of the population at time 7.

(d) Estimate how long it takes the population to reach
2 million.

Deer Population The graph shows the deer population in a
Pennsylvania county between 2010 and 2014. Assume that
the population grows exponentially.

(a) What was the deer population in 2010?

(b) Find a function that models the deer population ¢ years
after 2010.

(¢) What is the projected deer population in 2018?

SECTION 4.6 = Modeling with Exponential Functions 379

(d) Estimate how long it takes the population to reach
100,000.

n(t) A
(4, 31,000)
30,000 —
Deer 5 000
population
10,000
o 1 2 3 4 1
Years since 2010

12. Frog Population Some bullfrogs were introduced into a small

pond. The graph shows the bullfrog population for the next few
years. Assume that the population grows exponentially.

(a) What was the initial bullfrog population?

(b) Find a function that models the bullfrog population
t years since the bullfrogs were put into the pond.

(¢) What is the projected bullfrog population after
15 years?

(d) Estimate how long it takes the population to reach
75,000.

naA

700

600 /

500

400 //
00T 2,225) .~

200 i

100

Frog
population

0 1 2 3 4 5 6t

13. Bacteria Culture A culture starts with 8600 bacteria. After

1 hour the count is 10,000.

(a) Find a function that models the number of bacteria n(t)
after ¢ hours.

(b) Find the number of bacteria after 2 hours.

(c) After how many hours will the number of bacteria
double?

14. Bacteria Culture The count in a culture of bacteria was 400

after 2 hours and 25,600 after 6 hours.

(a) What is the relative rate of growth of the bacteria popula-
tion? Express your answer as a percentage.

(b) What was the initial size of the culture?

(c¢) Find a function that models the number of bacteria n(t)
after ¢ hours.

(d) Find the number of bacteria after 4.5 hours.

(e) After how many hours will the number of bacteria reach
50,0007
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15.

16.

Exponential and Logarithmic Functions

Population of California The population of California was
29.76 million in 1990 and 33.87 million in 2000. Assume
that the population grows exponentially.

(a) Find a function that models the population ¢ years after
1990.

(b) Find the time required for the population to double.

(c) Use the function from part (a) to predict the population
of California in the year 2010. Look up California’s
actual population in 2010, and compare.

World Population The population of the world was
7.1 billion in 2013, and the observed relative growth rate was
1.1% per year.

(a) Estimate how long it takes the population to double.
(b) Estimate how long it takes the population to triple.

17-24 = Radioactive Decay These exercises use the radioactive
decay model.

N LA

18.

19.

20.

21.

22.

Radioactive Radium The half-life of radium-226 is 1600
years. Suppose we have a 22-mg sample.

" that models the mass

(a) Find a function m(t) = my2~
remaining after ¢ years.

(b) Find a function m(t) = mye™" that models the mass
remaining after ¢ years.

(¢) How much of the sample will remain after 4000 years?

(d) After how many years will only 18 mg of the sample
remain?

Radioactive Cesium The half-life of cesium-137 is

30 years. Suppose we have a 10-g sample.

(a) Find a function m(1) = my2~"" that models the mass
remaining after ¢ years.

—rt

(b) Find a function m(t) = mye " that models the mass
remaining after ¢ years.

(¢) How much of the sample will remain after 80 years?

(d) After how many years will only 2 g of the sample

remain?

Radioactive Strontium  The half-life of strontium-90 is
28 years. How long will it take a 50-mg sample to decay to a
mass of 32 mg?

Radioactive Radium Radium-221 has a half-life of 30 s.
How long will it take for 95% of a sample to decay?

Finding Half-Life If 250 mg of a radioactive element decays
to 200 mg in 48 hours, find the half-life of the element.

Radioactive Radon After 3 days a sample of radon-222 has
decayed to 58% of its original amount.
(a) What is the half-life of radon-222?

(b) How long will it take the sample to decay to 20% of its
original amount?

23.

24.

Carbon-14 Dating A wooden artifact from an ancient
tomb contains 65% of the carbon-14 that is present in living
trees. How long ago was the artifact made? (The half-life of
carbon-14 is 5730 years.)

Carbon-14 Dating The burial cloth of an Egyptian mummy
is estimated to contain 59% of the carbon-14 it contained
originally. How long ago was the mummy buried? (The half-
life of carbon-14 is 5730 years.)

25-28 m Law of Cooling These exercises use Newton’s Law of
Cooling.

® 25,

26.

27.

. Boiling Water

Cooling Soup A hot bowl] of soup is served at a dinner
party. It starts to cool according to Newton’s Law of Cooling,
S0 its temperature at time 7 is given by

T(t) = 65 + 145¢700%

where 7 is measured in minutes and 7 is measured in °F.
(a) What is the initial temperature of the soup?

(b) What is the temperature after 10 min?

(c) After how long will the temperature be 100°F?

Time of Death Newton’s Law of Cooling is used in homicide

investigations to determine the time of death. The normal

body temperature is 98.6 °F. Immediately following death, the

body begins to cool. It has been determined experimentally

that the constant in Newton’s Law of Cooling is approxi-

mately k = 0.1947, assuming that time is measured in hours.

Suppose that the temperature of the surroundings is 60°F.

(a) Find a function 7(¢) that models the temperature 7 hours
after death.

(b) If the temperature of the body is now 72°F, how long ago
was the time of death?

Cooling Turkey A roasted turkey is taken from an oven

when its temperature has reached 185°F and is placed on a

table in a room where the temperature is 75°F.

(a) If the temperature of the turkey is 150°F after half an
hour, what is its temperature after 45 min?

(b) After how many hours will the turkey cool to 100°F?

A kettle full of water is brought to a boil in a
room with temperature 20°C. After 15 min the temperature of
the water has decreased from 100°C to 75°C. Find the tem-
perature after another 10 min. Illustrate by graphing the tem-
perature function.
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