
344 CHAPTER 4 ■ Exponential and Logarithmic Functions

4.3 LOGARITHMIC FUNCTIONS
■ Logarithmic Functions ■ Graphs of Logarithmic Functions ■ Common Logarithms  
■ Natural Logarithms

In this section we study the inverses of exponential functions.

■ Logarithmic Functions
Every exponential function f 1x 2  ax, with a  0 and a 2 1, is a one-to-one function by 
the Horizontal Line Test (see Figure 1 for the case a  1) and therefore has an inverse 
function. The inverse function f1 is called the logarithmic function with base a and is 
denoted by loga. Recall from Section 2.8 that f1 is defined by

f 
11x 2  y 3 f 1y 2  x

This leads to the following definition of the logarithmic function.

DEFINITION OF THE LOGARITHMIC FUNCTION

Let a be a positive number with a ? 1. The logarithmic function with base a, 
 denoted by loga, is defined by

loga x  y 3 ay  x

So loga x is the exponent to which the base a must be raised to give x.

We read loga x  y as “log base a of  
x is y.”

When we use the definition of logarithms to switch back and forth between the 
logarithmic form loga x  y and the exponential form ay  x, it is helpful to notice 
that, in both forms, the base is the same.

Logarithmic form  Exponential form

 loga x  y ay  x

EXAMPLE 1 ■ Logarithmic and Exponential Forms
The logarithmic and exponential forms are equivalent equations: If one is true, then  
so is the other. So we can switch from one form to the other as in the following 
illustrations.

Logarithmic form Exponential form

log10 100,000  5 105  100,000
log2 8  3 23  8
log2 A18 B  3 23  1

8  
log5 s  r 5r  s

Now Try Exercise 7 ■

By tradition the name of the logarith-
mic function is loga, not just a single 
letter. Also, we usually omit the paren-
theses in the function notation and 
write

loga1x 2  loga x

Base

ExponentExponent

Base

0 x

y
f(x)=a˛,

a>1

FIGURE 1 f 1x 2  ax is  
one-to-one.
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SECTION 4.3 ■ Logarithmic Functions 345

It is important to understand that loga x is an exponent. For example, the numbers in 
the right-hand column of the table in the margin are the logarithms (base 10) of the 
numbers in the left-hand column. This is the case for all bases, as the following example 
illustrates.

EXAMPLE 2 ■ Evaluating Logarithms
(a) log10 1000  3 because  103  1000

(b) log2 32  5 because  25  32

(c) log10 0.1  1 because  101  0.1

(d) log16 4 
1
2 because  161/2  4

Now Try Exercises 9 and 11 ■

When we apply the Inverse Function Property described on page 222 to f 1x 2  ax 
and f 

11x 2  loga x, we get

 loga1ax 2  x  x[ R

 aloga x  x  x  0

We list these and other properties of logarithms discussed in this section.

PROPERTIES OF LOGARITHMS

Property Reason

1. loga1  0 We must raise a to the power 0 to get 1.

2. loga a  1 We must raise a to the power 1 to get a.

3. loga a
x  x We must raise a to the power x to get ax.

4. aloga x  x loga x is the power to which a must be raised to get x.

EXAMPLE 3 ■ Applying Properties of Logarithms
We illustrate the properties of logarithms when the base is 5.

log5 1  0   Property 1    log5 5  1     Property 2

log5 5
8  8  Property 3    5log5 12  12    Property 4

Now Try Exercises 25 and 31 ■

■ Graphs of Logarithmic Functions
Recall that if a one-to-one function f has domain A and range B, then its inverse function 
f1 has domain B and range A. Since the exponential function f 1x 2  ax with a 2 1 has 
domain R and range 10, ` 2 , we conclude that its inverse function, f 

11x 2  loga x, has 
domain 10, ` 2  and range R.

The graph of f 
11x 2  loga x is obtained by reflecting the graph of f 1x 2  ax in the 

line y  x. Figure 2 shows the case a  1. The fact that y  ax (for a  1) is a very 
rapidly increasing function for x  0 implies that y  loga x is a very slowly increasing 
function for x  1 (see Exercise 102).

Since loga 1  0, the x-intercept of the function y  loga x is 1. The y-axis is a ver-
tical asymptote of y  loga x because loga xS`  as xS 0.

x log10 x

104 4
103 3
102 2
10 1
 1 0
101 1
102 2
103 3
104 4

Inverse Function Property:

f11f 1x 22  x

f 1f11x 22  x

y=a˛,  a>1

y=loga x

y=x

x

y

1

1

FIGURE 2 Graph of the logarithmic 
function f 1x 2  loga x
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346 CHAPTER 4 ■ Exponential and Logarithmic Functions

EXAMPLE 4 ■  Graphing a Logarithmic Function by Plotting Points
Sketch the graph of f 1x 2  log2 x.

SOLUTION  To make a table of values, we choose the x-values to be powers of 2 so 
that we can easily find their logarithms. We plot these points and connect them with a 
smooth curve as in Figure 3.

x log2 x

23 3
22 2
2 1
1 0
21 1
22 2
23 3
24 4

x

y

1
2
3

1 2 4 6 8_1
_2
_3
_4

f(x)=log¤ x

FIGURE 3

Now Try Exercise 49 ■

Figure 4 shows the graphs of the family of logarithmic functions with bases 2, 3, 5, 
and 10. These graphs are drawn by reflecting the graphs of y  2x, y  3x, y  5x, and 
y  10x (see Figure 2 in Section 4.1) in the line y  x. We can also plot points as an 
aid to sketching these graphs, as illustrated in Example 4.

y=log2 x 

y=log‹ x 

y=logfi x 

y=log⁄‚ x 

0 x

y

1

1

FIGURE 4 A family of logarithmic 
functions

In the next two examples we graph logarithmic functions by starting with the basic 
graphs in Figure 4 and using the transformations of Section 2.6.

EXAMPLE 5 ■ Re!ecting Graphs of Logarithmic Functions
Sketch the graph of each function. State the domain, range, and asymptote.

(a) g1x 2  log2 x   (b) h1x 2  log21x 2
SOLUTION

(a)  We start with the graph of f 1x 2  log2 x and reflect in the x-axis to get the graph 
of g1x 2  log2 x in Figure 5(a). From the graph we see that the domain of g is 10, ` 2 , the range is the set R of all real numbers, and the line x  0 is a vertical 
asymptote.
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SECTION 4.3 ■ Logarithmic Functions 347

(b)  We start with the graph of f 1x 2  log2 x and reflect in the y-axis to get the graph 
of h1x 2  log21x 2  in Figure 5(b). From the graph we see that the domain of h 
is 1`, 0 2 , the range is the set R of all real numbers, and the line x  0 is a ver-
tical asymptote.

f(x)=log¤ x f(x)=log¤ x

g(x)=_log¤ x
h(x)=log¤(_x)

(a)

x

y

1

1 10

(b)

_1 x

y

1

0

FIGURE 5

Now Try Exercise 61 ■

EXAMPLE 6 ■ Shifting Graphs of Logarithmic Functions
Sketch the graph of each function. State the domain, range, and asymptote.

(a) g1x 2  2  log5 x   (b) h1x 2  log101x  3 2
SOLUTION

(a)  The graph of g is obtained from the graph of f 1x 2  log5 x (Figure 4) by shifting 
 upward 2 units, as shown in Figure 6. From the graph we see that the domain of g 
is 10, ` 2 , the range is the set R of all real numbers, and the line x  0 is a verti-
cal asymptote.

3

0 x

y

1

1
2

g(x)=2+logfi x

f(x)=logfi x

FIGURE 6

(b)  The graph of h is obtained from the graph of f 1x 2  log10 x (Figure 4) by shift-
ing to the right 3 units, as shown in Figure 7. From the graph we see that the 
domain of h is 13, ` 2 , the range is the set R of all real numbers, and the line 
x  3 is a vertical asymptote.

f(x)=log⁄‚ x

h(x)=log⁄‚(x-3)

10 x

y

4

1
Asymptote
x=3

FIGURE 7

Now Try Exercises 63 and 67 ■

Law Enforcement
Mathematics aids law enforcement in 
numerous and surprising ways, from the 
reconstruction of bullet trajectories to 
determining the time of death to calcu-
lating the probability that a DNA sample 
is from a particular person. One interest-
ing use is in the search for missing per-
sons. A person who has been missing for 
several years might look quite di!erent 
from his or her most recent available 
photograph. This is particularly true if the 
missing person is a child. Have you ever 
wondered what you will look like 5, 10, or 
15 years from now?

Researchers have found that di!erent 
parts of the body grow at di!erent rates. 
For example, you have no doubt noticed 
that a baby’s head is much larger relative 
to its body than an adult’s. As another 
example, the ratio of arm length to 
height is 1

3  in a child but about 2
5  in an 

adult. By collecting data and analyzing 
the graphs, researchers are able to deter-
mine the functions that model growth. 
As in all growth phenomena, exponential 
and logarithmic functions play a crucial 
role. For instance, the formula that relates 
arm length l to height h is l  aekh where 
a and k are constants. By studying vari-
ous physical characteristics of a person, 
mathematical biologists model each 
characteristic by a function that de  scribes 
how it changes over time. Models of 
facial characteristics can be programmed 
into a computer to give a picture of how 
a person’s appearance changes over time. 
These pictures aid law enforcement 
agencies in locating missing  persons.

Mathematics in the Modern World

Bettmann/CORBIS Hulton-Deutsch Collection/
Historical/Corbis
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348 CHAPTER 4 ■ Exponential and Logarithmic Functions

■ Common Logarithms
We now study logarithms with base 10.

COMMON LOGARITHM

The logarithm with base 10 is called the common logarithm and is denoted by 
omitting the base:

log x  log10 x

From the definition of logarithms we can easily find that

log 10  1  and  log 100  2

But how do we find log 50? We need to find the exponent y such that 10 y  50. Clearly, 
1 is too small and 2 is too large. So

1  log 50  2

To get a better approximation, we can experiment to find a power of 10 closer to 50. 
Fortunately, scientific calculators are equipped with a LOG  key that directly gives val-
ues of common logarithms.

EXAMPLE 7 ■ Evaluating Common Logarithms
Use a calculator to find appropriate values of f 1x 2  log x, and use the values to 
sketch the graph.

SOLUTION  We make a table of values, using a calculator to evaluate the function at 
those values of x that are not powers of 10. We plot those points and connect them by 
a smooth curve as in Figure 8.

x log x

 0.01 2
 0.1 1
 0.5 0.301
 1 0
 4 0.602
 5 0.699
10 1

FIGURE 8

f(x)=log x

0 x

y

2

2

4 6 8 10 12
_1

1

Now Try Exercise 51 ■

Scientists model human response to stimuli (such as sound, light, or pressure) using 
logarithmic functions. For example, the intensity of a sound must be increased many-
fold before we “feel” that the loudness has simply doubled. The psychologist Gustav 
Fechner formulated the law as

S  k log a I
I0
b

where S is the subjective intensity of the stimulus, I is the physical intensity of the 
stimulus, I0 stands for the threshold physical intensity, and k is a constant that is differ-
ent for each sensory stimulus.
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JOHN NAPIER (1550–1617) was a Scot-
tish landowner for whom mathematics 
was a hobby. We know him today 
because of his key invention: logarithms, 
which he published in 1614 under the 
title A Description of the Marvelous Rule of 
Logarithms. In Napier’s time, logarithms 
were used exclusively for simplifying 
complicated calculations. For example, to 
multiply two large numbers, we would 
write them as powers of 10. The expo-
nents are simply the logarithms of the 
numbers. For instance,

4532  57783

      < 103.65629  104.76180

       108.41809

      < 261,872,564

The idea is that multiplying powers of 
10 is easy (we simply add their exponents). 
Napier produced extensive tables giving 
the logarithms (or exponents) of numbers. 
Since the advent of calculators and com-
puters, logarithms are no longer used for 
this purpose. The logarithmic functions, 
however, have found many applications, 
some of which are described in this 
chapter.

Napier wrote on many topics. One of 
his most colorful works is a book entitled  
A Plaine Discovery of the Whole Revelation of 
Saint John, in which he predicted that the 
world would end in the year 1700.

Human response to sound and light  
intensity is logarithmic.
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SECTION 4.3 ■ Logarithmic Functions 349

EXAMPLE 8 ■ Common Logarithms and Sound
The perception of the loudness B (in decibels, dB) of a sound with physical intensity I 
(in W/m2) is given by

B  10  log a I
I0
b

where I0 is the physical intensity of a barely audible sound. Find the decibel level 
(loudness) of a sound whose physical intensity I is 100 times that of I0.

SOLUTION  We find the decibel level B by using the fact that I  100I0.

 B  10  log a I
I0
b     Definition of B

  10  log a 100I0

I0
b     I  100I0

  10  log 100     Cancel I0

  10 # 2  20     Definition of log

The loudness of the sound is 20 dB.

Now Try Exercise 97 ■

■ Natural Logarithms
Of all possible bases a for logarithms, it turns out that the most convenient choice for 
the purposes of calculus is the number e, which we defined in Section 4.2.

NATURAL LOGARITHM

The logarithm with base e is called the natural logarithm and is denoted by ln:

ln x  loge x

The natural logarithmic function y  ln x is the inverse function of the natural expo-
nential function y  ex. Both functions are graphed in Figure 9. By the definition of 
inverse functions we have

ln x  y 3 ey  x

If we substitute a  e and write “ln” for “loge” in the properties of logarithms men-
tioned earlier, we obtain the following properties of natural logarithms.

PROPERTIES OF NATURAL LOGARITHMS

Property Reason

1. ln 1  0 We must raise e to the power 0 to get 1.

2. ln e  1 We must raise e to the power 1 to get e.

3. ln ex  x We must raise e to the power x to get ex.

4. eln x  x ln x is the power to which e must be raised to get x.

We study the decibel scale in more  
detail in Section 4.7.

The notation ln is an abbreviation for 
the Latin name logarithmus naturalis.

FIGURE 9 Graph of the natural  
logarithmic function

y=x

y=e˛

y=ln x

x

y

1

1
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350 CHAPTER 4 ■ Exponential and Logarithmic Functions

Calculators are equipped with an LN  key that directly gives the values of natural 
 logarithms.

EXAMPLE 9 ■ Evaluating the Natural Logarithm Function
(a) ln e8  8 Definition of natural logarithm

(b) ln a 1
e 2 b  ln e2  2 Definition of natural logarithm

(c) ln 5 ^ 1.609 Use LN  key on calculator

Now Try Exercise 47 ■

EXAMPLE 10 ■ Finding the Domain of a Logarithmic Function
Find the domain of the function f 1x 2  ln14  x2 2 .
SOLUTION  As with any logarithmic function, ln x is defined when x  0. Thus the 
domain of f is

 5x 0  4  x2  06  5x 0  x2  46  5x @ 0 x 0  26
  5x 0  2  x  26  12, 2 2

Now Try Exercise 73 ■

EXAMPLE 11 ■ Drawing the Graph of a Logarithmic Function
Draw the graph of the function y  x ln14  x2 2 , and use it to find the asymptotes 
and local maximum and minimum values.

SOLUTION  As in Example 10 the domain of this function is the interval 12, 2 2 , so 
we choose the viewing rectangle 33, 34 by 33, 34. The graph is shown in Figure 10, 
and from it we see that the lines x  2 and x  2 are vertical asymptotes.

3

_3

_3 3

FIGURE 10 
y  x ln14  x2 2

DISCOVERY PROJECT

Orders of Magnitude

In this project we explore how to compare the sizes of real-world objects using 
logarithms. For example, how much bigger is an elephant than a !ea? How much 
smaller is a man than a giant redwood? It is dif"cult to compare objects of such 
enormously varying sizes. In this project we learn how logarithms can be used to 
de"ne the concept of “order of magnitude,” which provides a simple and mean-
ingful way of comparison. You can "nd the project at www.stewartmath.com.
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SECTION 4.3 ■ Logarithmic Functions 351

CONCEPTS
 1. log x is the exponent to which the base 10 must be raised to get

     . So we can complete the following table for log x.

x 103 102 101 100 101 102 103 101/2

log x

 2. The function f 1x 2  log9 x is the logarithm function  

with base    . So f 19 2     ,  

f 11 2     , f A19 B     , f 181 2     , 

and f 13 2     .

 3. (a) 53  125, so log   

  (b) log5 25  2, so   

 4. Match the logarithmic function with its graph.
(a) f 1x 2  log2 

 x (b) f 1x 2  log21x 2     
(c) f 1x 2  log2 x (d) f 1x 2  log21x 2
I y

x0 2
1

II y

x0 2
1

IV y

x0 2
1

III y

x0 2
1

 5. The natural logarithmic function f 1x 2  ln x has the  
  asymptote x     . 

 6. The logarithmic function f 1x 2  ln1x  1 2  has the  
  asymptote x     . 

SKILLS
7–8 ■ Logarithmic and Exponential Forms  Complete the table 
by finding the appropriate logarithmic or exponential form of the 
equation, as in Example 1.

 7. 
Logarithmic 

form
Exponential  

form

log8 8  1

log8 64  2

82/3  4

83  512

log8A18 B  1

82  1
64

 8. 
Logarithmic 

form
Exponential  

form

43  64

log 4 2 
1
2

43/2 8

log4A 1
16 B   2

log4A12 B  1
2

45/2  1
32

9–16 ■ Exponential Form  Express the equation in exponential 
form.

 9. (a) log3 81  4 (b) log3 1  0

 10. (a) log5A15 B  1 (b) log4 64  3

 11. (a) log8 2 
1
3 (b) log10 0.01  2

 12. (a) log5A 1
125 B  3 (b) log8 4 

2
3

 13. (a) log3 5  x (b) log713y 2  2

14. (a) log6 z  1 (b) log10 3  2t

15. (a) ln 5  3y (b) ln1 t  1 2  1

 16. (a) ln1x  1 2  2 (b) ln1x  1 2  4

17–24 ■ Logarithmic Form  Express the equation in logarithmic 
form.

 17. (a) 104  10,000 (b) 52  1
25

 18. (a) 62  36 (b) 101  1
10

4.3 EXERCISES

The function has a local maximum point to the right of x  1 and a local minimum 
point to the left of x  1. By zooming in and tracing along the graph with the cur-
sor, we find that the local maximum value is approximately 1.13 and this occurs when  
x ^ 1.15. Similarly (or by noticing that the function is odd), we find that the local 
minimum value is about 1.13, and it occurs when x ^ 1.15.

Now Try Exercise 79 ■

71759_ch04_329-400.indd   351 9/16/14   5:23 PM

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



352 CHAPTER 4 ■ Exponential and Logarithmic Functions

 19. (a) 81  1
8 (b) 23  1

8

 20. (a) 43/2  0.125 (b) 73  343

21. (a) 4x  70 (b) 35  „
22. (a) 32x  10 (b) 104x  0.1

 23. (a) ex  2 (b) e3  y

 24. (a) ex1  0.5 (b) e0.5x  t

25–34 ■ Evaluating Logarithms  Evaluate the expression.

 25. (a) log2 2 (b) log5 1 (c) log6 6
5

 26. (a) log3 3
7 (b) log4 64 (c) log5 125

 27. (a) log6 36 (b) log9 81 (c) log7 7
10

 28. (a) log2 32 (b) log8 8
17 (c) log6 1

 29. (a) log3A 1
 27 
B  (b) log10 !10 (c) log5 0.2

 30. (a) log5 125 (b) log49 7 (c) log9 !3

 31. (a) 3log3 5 (b) 5log5 27 (c) eln 10

32. (a) eln !3 (b) eln11/p2 (c) 10log 13

 33. (a) log8 0.25 (b) ln e4 (c) ln11/e 2
 34. (a) log4 !2 (b) log4A12 B  (c) log4 8

35–44 ■ Logarithmic Equations  Use the definition of the loga-
rithmic function to find x.

 35. (a) log4 x  3 (b) log10 0.01  x

 36. (a) log3 x  2 (b) log5 125  x

37. (a) ln x  3 (b) ln e2  x

38. (a) ln x  1 (b) ln11/e 2  x

 39. (a) log7A 1
49 B  x (b) log2 x  5

 40. (a) log4 2  x (b) log4 x  2

 41. (a) log2A12 B  x (b) log10 x  3

42. (a) logx 1000  3 (b) logx 25  2

 43. (a) logx 16  4 (b) logx 8 
3
2

 44. (a) logx 6 
1
2 (b) logx 3 

1
3

45–48 ■ Evaluating Logarithms  Use a calculator to evaluate the 
expression, correct to four decimal places.

 45. (a) log 2 (b) log 35.2 (c) logA23 B
 46. (a) log 50 (b) log !2 (c) log13 !2 2
 47. (a) ln 5 (b) ln 25.3 (c) ln11  !3 2
 48. (a) ln 27 (b) ln 7.39 (c) ln 54.6

49–52 ■ Graphing Logarithmic Functions  Sketch the graph of 
the function by plotting points.

 49. f 1x 2  log3 x 50. g1x 2  log4 x

 51. f 1x 2  2 log x 52. g1x 2  1  log x

53–56 ■ Finding Logarithmic Functions  Find the function of 
the form y  loga x whose graph is given.

 53. 

x

y

0 1 5

(5, 1)1

 54. 

0 x

y

1
!   , _1@1

2
_1

1

55. 

0 x

y

1 3

1 !3,   @1
2

 56. 

0 x

y

1 963

(9, 2)

1

57–58 ■ Graphing Logarithmic Functions  Match the logarith-
mic function with one of the graphs  labeled I or II.

 57. f 1x 2  2  ln x 58. f 1x 2  ln1x  2 2
y

(1, 2)

x0 1

2

I

 

II y

(3, 0)

x1 30

x=2

 59. Graphing  Draw the graph of y  4x, then use it to draw the 
graph of y  log4 x.

 60. Graphing  Draw the graph of y  3x, then use it to draw the 
graph of y  log3 x.

61–72 ■ Graphing Logarithmic Functions  Graph the function, 
not by plotting points, but by starting from the graphs in Figures 
4 and 9. State the domain, range, and asymptote.

61. g1x 2  log51x 2  62. f 1x 2  log10 x

63. f 1x 2  log21x  4 2  64. g1x 2  ln1x  2 2
65. h1x 2  ln1x  5 2  66. g1x 2  log61x  3 2
 67. y  2  log3 x 68. y  1  log10 x

69. y  log31x  1 2  2 70. y  1  ln1x 2
 71. y  0  ln x 0  72. y  ln 0  x 0
73–78 ■ Domain  Find the domain of the function.

 73. f 1x 2  log101x  3 2  74. f 1x 2  log518  2x 2
75. g1x 2  log31x2  1 2  76. g1x 2  ln1x  x2 2
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SECTION 4.3 ■ Logarithmic Functions 353

 77. h1x 2  ln x  ln12  x 2
 78. h1x 2  !x  2  log5110  x 2
79–84 ■ Graphing Logarithmic Functions  Draw the graph of 
the function in a suitable viewing rectangle, and use it to find the 
domain, the asymptotes, and the local maximum and minimum 
values.

 79. y  log1011  x2 2  80. y  ln1x2  x 2
 81. y  x  ln x 82. y  x1 ln x 2 2
 83. y 

ln x
x

 84. y  x log101x  10 2
SKILLS Plus
85–88 ■ Domain of a Composition  Find the functions f + g and 
g + f  and their domains.

85. f 1x 2  2x,  g1x 2  x  1 

86. f 1x 2  3x,  g1x 2  x2  1

87. f 1x 2  log2 x, g1x 2  x  2 

88. f 1x 2  log x, g1x 2  x2

 89. Rates of Growth  Compare the rates of growth of the func-
tions f 1x 2  ln x and g1x 2  !x by drawing their graphs on 
a common screen using the viewing rectangle 31, 304 by 31, 64.

 90. Rates of Growth  
(a) By drawing the graphs of the functions

f 1x 2  1  ln11  x 2  and  g1x 2  !x

   in a suitable viewing rectangle, show that even when a 
 logarithmic function starts out higher than a root func-
tion, it is ultimately overtaken by the root function.

(b)  Find, rounded to two decimal places, the solutions of the 
equation !x  1  ln11  x 2 .

91–92 ■ Family of Functions  A family of functions is given.  
(a) Draw graphs of the family for c  1, 2, 3, and 4. (b) How are 
the graphs in part (a)  related?

 91. f 1x 2  log1cx 2  92. f 1x 2  c log x

93–94 ■ Inverse Functions  A function f 1x 2  is given. (a) Find 
the domain of the function f. (b) Find the inverse function of f.

 93. f 1x 2  log21 log10  x 2  94. f 1x 2  ln1 ln1 ln x 22
 95. Inverse Functions  

(a) Find the inverse of the function f 1x 2  2x

1  2x .

(b) What is the domain of the inverse function?

APPLICATIONS
 96. Absorption of Light  A spectrophotometer measures the con-

centration of a sample dissolved in water by shining a light 
through it and recording the amount of light that emerges. In 

  other words, if we know the amount of light that is absorbed, 
we can calculate the concentration of the sample. For a certain 
substance the concentration (in moles per liter, mol/L) is 
found by using the  formula

C  2500 lna I
I0
b

  where I0 is the intensity of the incident light and I is the  
intensity of light that emerges. Find the concentration of the 
substance if the intensity I is 70% of I0.

I0 I

 97. Carbon Dating  The age of an ancient artifact can be deter-
mined by the amount of radioactive carbon-14 remaining in it. 
If D0 is the original amount of carbon-14 and D is the amount 
remaining, then the artifact’s age A (in years) is given by

A  8267 lna D
D0
b

  Find the age of an object if the amount D of carbon-14 that  
remains in the object is 73% of the original amount D0.

 98. Bacteria Colony  A certain strain of bacteria divides every  
3 hours. If a colony is started with 50 bacteria, then the time 
t (in hours) required for the colony to grow to N bacteria is 
given by

t  3 

log1N/50 2
log 2

  Find the time required for the colony to grow to a million 
 bacteria.

 99. Investment  The time required to double the amount of an 
investment at an interest rate r compounded continuously is 
given by

t 
ln 2

r

  Find the time required to double an investment at 6%, 7%,  
and 8%.

 100. Charging a Battery  The rate at which a battery charges is 
slower the closer the battery is to its maximum charge C0. 
The time (in hours) required to charge a fully discharged 
battery to a charge C is given by

t  k ln a1 
C
C0
b

  where k is a positive constant that depends on the battery.  
For a certain battery, k  0.25. If this battery is fully dis-
charged, how long will it take to charge to 90% of its maxi-
mum charge C0?
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