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 66. Maximizing Pro!t  A community bird-watching society 
makes and sells simple bird feeders to raise money for its 
 conservation activities. The materials for each feeder cost $6, 
and the society sells an average of 20 per week at a price of 
$10 each. The society has been considering raising the price, 
so it conducts a survey and !nds that for every dollar 
increase, it will lose 2 sales per week.
(a)  Find a function that models weekly pro!t in terms of 

price per feeder.
(b)  What price should the society charge for each feeder  

to maximize pro!ts? What is the maximum weekly 
pro!t?

DISCUSS ■ DISCOVER ■ PROVE ■ WRITE
 67. DISCOVER: Vertex and x-Intercepts  We know that the graph 

of the quadratic function f 1x 2  1x  m 2 1x  n 2  is a parab-
ola. Sketch a rough graph of what such a parabola would 
look like. What are the x-intercepts of the graph of f? Can 
you tell from your graph the x-coordinate of the vertex in 
terms of m and n? (Use the symmetry of the parabola.) Con-
!rm your answer by expanding and using the formulas of this 
section.

3.2 POLYNOMIAL FUNCTIONS AND THEIR GRAPHS
■ Polynomial Functions ■ Graphing Basic Polynomial Functions ■ Graphs of Polynomial 
Functions: End Behavior ■ Using Zeros to Graph Polynomials ■ Shape of the Graph Near  
a Zero ■ Local Maxima and Minima of Polynomials

■ Polynomial Functions
In this section we study polynomial functions of any degree. But before we work with 
polynomial functions, we must agree on some terminology.

POLYNOMIAL FUNCTIONS

A polynomial function of degree n is a function of the form

P1x 2  an 
x 

n  an1x
n1  . . .  a1x  a0

where n is a nonnegative integer and an ? 0.

The numbers a0, a1, a2, . . . , an are called the coefficients of the polynomial. 

The number a0 is the constant coefficient or constant term. 

The number an, the coefficient of the highest power, is the leading coefficient, 
and the term an 

xn is the leading term.

We often refer to polynomial functions simply as polynomials. The following poly-
nomial has degree 5, leading coefficient 3, and constant term 6.

3x5  6x4  2x3  x2  7x  6

Degree 5Leading 
coef!cient 3

Leading term 3x5

Coef!cients 3, 6, 2, 1, 7, and 6

Constant term 6
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 255

The table lists some more examples of polynomials.

Polynomial Degree Leading term Constant term

P1x 2  4x  7 1 4x 7
P1x 2  x2  x 2 x2 0
P1x 2  2x3  6x2  10 3 2x3 10
P1x 2  5x4  x  2 4 5x4 2

If a polynomial consists of just a single term, then it is called a monomial. For example, 
P1x 2  x3 and Q1x 2  6x5 are monomials.

■ Graphing Basic Polynomial Functions
The simplest polynomial functions are the monomials P1x 2  xn, whose graphs are 
shown in Figure 1. As the figure suggests, the graph of P1x 2  xn has the same general 
shape as the graph of y  x2 when n is even and the same general shape as the graph 
of y  x3 when n is odd. However, as the degree n becomes larger, the graphs become 
flatter around the origin and steeper elsewhere.

FIGURE 1 Graphs of monomials
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EXAMPLE 1 ■ Transformations of Monomials
Sketch graphs of the following functions.

(a) P1x 2  x3 (b) Q1x 2  1x  2 2 4
(c) R1x 2  2x5  4

Splines

Mathematics in the Modern World

adjusting the coefficients of the polynomial (see Example 10,  
page 265).

Curves obtained in this way are called cubic splines. In modern com-
puter design programs, such as Adobe Illustrator or Microsoft Paint, a 
curve can be drawn by fix ing two points, then using the mouse to drag 
one or more anchor points. Moving the anchor points amounts to adjust-
ing the coeffi cients of a cubic polynomial.

A spline is a long strip of wood that is curved while held fixed at certain 
points. In the old days ship builders used splines to create the curved 
shape of a boat’s hull. Splines are also used to make the curves of a 
piano, a violin, or the spout of a teapot.

Mathematicians discovered that the shapes of splines can be 
obtained by piecing together parts of polynomials. For example, the 
graph of a cubic polynomial can be made to fit specified points by 
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256 CHAPTER 3 ■ Polynomial and Rational Functions

SOLUTION  We use the graphs in Figure 1 and transform them using the techniques of 
Section 2.6.

(a)  The graph of P1x 2  x3 is the reflection of the graph of y  x3 in the x-axis, as 
shown in Figure 2(a) below.

(b)  The graph of Q1x 2  1x  2 2 4 is the graph of y  x4 shifted to the right 2 units, 
as shown in Figure 2(b).

(c)  We begin with the graph of y  x5. The graph of y  2x5 is obtained by stretch- 
ing the graph vertically and reflecting it in the x-axis (see the dashed blue graph 
in Figure 2(c)). Finally, the graph of R1x 2  2x5  4 is obtained by shifting 
upward 4 units (see the red graph in Figure 2(c)).
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Now Try Exercise 5 ■

■ Graphs of Polynomial Functions: End Behavior
The graphs of polynomials of degree 0 or 1 are lines (Sections 1.10 and 2.5), and the 
graphs of polynomials of degree 2 are parabolas (Section 3.1). The greater the degree 
of a polynomial, the more complicated its graph can be. However, the graph of a poly-
nomial function is continuous. This means that the graph has no breaks or holes (see 
Figure 3). Moreover, the graph of a polynomial function is a smooth curve; that is, it 
has no corners or sharp points (cusps) as shown in Figure 3.

Not the graph of a
polynomial function

y y y

x x x

break
hole

Not the graph of a
polynomial function

corner

cusp

Graph of a polynomial
function

smooth and
continuous

y

x

Graph of a polynomial
function

smooth and
continuous

FIGURE 3
The domain of a polynomial function is the set of all real numbers, so we can sketch 

only a small portion of the graph. However, for values of x  outside the portion of the 
graph we have drawn, we can describe the behavior of the graph.

The end behavior of a polynomial is a description of what happens as x becomes 
large in the positive or negative direction. To describe end behavior, we use the follow-
ing arrow notation.

Symbol Meaning

xS  x goes to in!nity; that is, x increases without bound
xS x goes to negative in!nity; that is, x decreases without bound
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 257

For example, the monomial y  x2 in Figure 1(b) has the following end behavior.

yS  as xS   and  yS  as xS

The monomial y  x3 in Figure 1(c) has the following end behavior.

yS  as xS   and  yS as xS

For any polynomial the end behavior is determined by the term that contains the high-
est power of x, because when x is large, the other terms are relatively insignificant in 
size. The following box shows the four possible types of end behavior, based on the 
highest power and the sign of its coefficient.

END BEHAVIOR OF POLYNOMIALS

The end behavior of the polynomial P1x 2  anxn  an1x
n1  . . .  a1x  a0 is determined by the degree n and the 

sign of the leading coefficient an, as indicated in the following graphs.

 P has odd degree P has even degree
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EXAMPLE 2 ■ End Behavior of a Polynomial
Determine the end behavior of the polynomial

P1x 2  2x4  5x3  4x  7

SOLUTION  The polynomial P has degree 4 and leading coefficient 2. Thus P has 
even degree and negative leading coefficient, so it has the following end behavior.

yS as xS   and  yS as xS

The graph in Figure 4 illustrates the end behavior of P.

FIGURE 4 P1x 2  2x4  5x3  4x  7
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Now Try Exercise 11 ■
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258 CHAPTER 3 ■ Polynomial and Rational Functions

EXAMPLE 3 ■ End Behavior of a Polynomial
(a) Determine the end behavior of the polynomial P1x 2  3x5  5x3  2x.

(b)  Con!rm that P and its leading term Q1x 2  3x5 have the same end behavior by 
graphing them together.

SOLUTION

(a)  Since P has odd degree and positive leading coef!cient, it has the following end 
 behavior.

yS  as xS   and  yS as xS

(b)  Figure 5 shows the graphs of P and Q in progressively larger viewing rectangles. 
The larger the viewing rectangle, the more the graphs look alike. This con!rms 
that they have the same end behavior.

Now Try Exercise 45 ■

To see algebraically why P and Q in Example 3 have the same end behavior, factor 
P as follows and compare with Q.

 P1x 2  3x5 a 1 
5

3x2 
2

3x4 b     
 Q1x 2  3x5

When x is large, the terms 5/ 13x2 2  and 2/ 13x4 2  are close to 0 (see Exercise 90 on  
page 12). So for large x we have

 P1x 2  3x511  0  0 2   3x5  Q1x 2
So when x is large, P and Q have approximately the same values. We can also see this 
 numerically by making a table like the one shown below.

x Pxxc Qxxc

15   2,261,280   2,278,125
30  72,765,060  72,900,000
50 936,875,100 937,500,000

By the same reasoning we can show that the end behavior of any polynomial is de-
termined by its leading term.

■ Using Zeros to Graph Polynomials
If P is a polynomial function, then c is called a zero of P if P1c 2  0. In other words, 
the zeros of P are the solutions of the polynomial equation P1x 2  0. Note that if 
P1c 2  0, then the graph of P has an x-intercept at x  c, so the x-intercepts of the 
graph are the  zeros of the function.
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FIGURE 5  
 P1x 2  3x5  5x3  2x
 Q1x 2  3x5
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 259

REAL ZEROS OF POLYNOMIALS

If P is a polynomial and c is a real number, then the following are equivalent:

1. c is a zero of P.

2. x  c is a solution of the equation P1x 2  0.

3. x  c is a factor of P1x 2 .
4. c is an x-intercept of the graph of P.

To !nd the zeros of a polynomial P, we factor and then use the Zero-Product Prop-
erty (see page 48). For example, to !nd the zeros of P1x 2  x2  x  6, we factor P 
to get

P1x 2  1x  2 2 1x  3 2
From this factored form we easily see that

1. 2 is a zero of P.

2. x  2 is a solution of the equation x2  x  6  0.

3. x  2 is a factor of x2  x  6.

4. 2 is an x-intercept of the graph of P.

The same facts are true for the other zero, 3.
The following theorem has many important consequences. (See, for instance, the 

Discovery Project referenced on page 276.) Here we use it to help us graph polynomial 
functions.

INTERMEDIATE VALUE THEOREM FOR POLYNOMIALS

If P is a polynomial function and P1a 2  and P1b 2  have opposite signs, then 
there exists at least one value c between a and b for which P1c 2  0.

We will not prove this theorem, but Figure 6 shows why it is intuitively plausible.
One important consequence of this theorem is that between any two successive ze ros 

the values of a polynomial are either all positive or all negative. That is, between two suc-
cessive zeros the graph of a polynomial lies entirely above or entirely below the x-axis. To 
see why, suppose c1 and c2 are successive zeros of P. If P has both positive and negative 
values between c1 and c2, then by the Intermediate Value Theorem, P must have another 
zero between c1 and c2. But that’s not possible because c1 and c2 are successive zeros. This 
observation allows us to use the following guidelines to graph polynomial functions.

GUIDELINES FOR GRAPHING POLYNOMIAL FUNCTIONS

1.  Zeros.  Factor the polynomial to !nd all its real zeros; these are the  
x-intercepts of the graph.

2.  Test Points.  Make a table of values for the polynomial. Include test points to 
determine whether the graph of the polynomial lies above or below the x-axis 
on the intervals determined by the zeros. Include the y-intercept in the table.

3. End Behavior.  Determine the end behavior of the polynomial.

4.  Graph.  Plot the intercepts and other points you found in the table. Sketch 
a smooth curve that passes through these points and exhibits the required 
end  behavior.

FIGURE 6
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260 CHAPTER 3 ■ Polynomial and Rational Functions

EXAMPLE 4 ■ Using Zeros to Graph a Polynomial Function
Sketch the graph of the polynomial function P1x 2  1x 1 2 2 1x  1 2 1x  3 2 .
SOLUTION  The zeros are x  2, 1, and 3. These determine the intervals 1`,  2 2 , 12,  1 2 , 11,  3 2 , and 13,  ` 2 . Using test points in these intervals, we get the informa-
tion in the following sign diagram (see Section 1.8).

Sign of
P1x 2  1x 1 2 2 1x  1 2 1x  3 2
Graph of P

_2 1

+-
below
x-axis

above
x-axis

below
x-axis

above
x-axis

+

3

-

Test point
x = –3

P(–3) < 0

Test point
x = –1

P(–1) > 0

Test point
x = 2

P (2) < 0

Test point
x = 4

P (3) > 0

Plotting a few additional points and connecting them with a smooth curve helps us to 
complete the graph in Figure 7.

Test point →

Test point →

Test point →

Test point →

FIGURE 7 P1x 2  1x 1 2 2 1x  1 2 1x  3 2
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3 24
2 0
1 8

0 6
1 0
2 4
3 0
4 18

Now Try Exercise 17 ■

EXAMPLE 5 ■ Finding Zeros and Graphing a Polynomial Function
Let P1x 2  x3  2x2  3x.

(a) Find the zeros of P.   (b) Sketch a graph of P.

SOLUTION 

(a) To find the zeros, we factor completely.

 P1x 2  x3  2x2  3x

  x1x2  2x  3 2     Factor x

  x1x  3 2 1x 1 1 2     Factor quadratic

  Thus the zeros are x  0, x  3, and x  1.

(b)  The x-intercepts are x  0, x  3, and x  1. The y-intercept is P10 2  0. We 
make a table of values of P1x 2 , making sure that we choose test points between 
(and to the right and left of) successive zeros.

     Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

yS ` as xS `  and  yS` as xS`
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Automotive Design
Computer-aided design (CAD) has com-
pletely changed the way in which car 
companies design and manufacture cars. 
Before the 1980s automotive engineers 
would build a full-scale “nuts and bolts” 
model of a proposed new car; this was 
really the only way to tell whether the 
design was feasible. Today automotive 
engineers build a mathematical model, 
one that exists only in the memory of a 
computer. The model incorporates all the 
main design features of the car. Certain 
polynomial curves, called splines (see 
page 255), are used in shaping the body 
of the car. The resulting “mathematical 
car” can be tested for structural stability, 
handling, aerodynamics, suspension 
response, and more. All this testing is 
done before a prototype is built. As you 
can imagine, CAD saves car manufactur-
ers millions of dollars each year. More 
importantly, CAD gives automotive engi-
neers far more flexibility in design; 
desired changes can be created and 
tested within seconds. With the help of 
computer graphics, designers can see 
how good the “mathematical car” looks 
before they build the real one. Moreover, 
the mathematical car can be viewed from 
any perspective; it can be moved, 
rotated, or seen from the inside. These 
manipulations of the car on the com-
puter monitor translate mathematically 
into solving large systems of linear 
equations.

Mathematics in the Modern World
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 261

   We plot the points in the table and connect them by a smooth curve to complete 
the graph, as shown in Figure 8.

Test point →

Test point →

Test point →

Test point →

FIGURE 8 P1x 2  x3  2x2  3x

x Pxxc

2 10
1 0
 1

2  7
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0 0
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2 6
3 0
4 20

y

0 x
15

Now Try Exercise 31 ■

EXAMPLE 6 ■ Finding Zeros and Graphing a Polynomial Function
Let P1x 2  2x4  x3 1 3x2.

(a) Find the zeros of P.   (b) Sketch a graph of P.

SOLUTION

(a) To find the zeros, we factor completely.

 P1x 2  2x4  x3 1 3x2

  x212x2 1 x  3 2     Factor x2

  x212x 1 3 2 1x  1 2     Factor quadratic

  Thus the zeros are x  0, x  3
2, and x  1.

(b)  The x-intercepts are x  0, x  3
2, and x  1. The y-intercept is P10 2  0. We 

make a table of values of P1x 2 , making sure that we choose test points between 
(and to the right and left of) successive zeros.

     Since P is of even degree and its leading coefficient is negative, it has the fol-
lowing end behavior.

yS` as xS `  and  yS` as xS`

   We plot the points from the table and connect the points by a smooth curve to 
complete the graph in Figure 9.

y

0 x1

2

_12

FIGURE 9 P1x 2  2x4  x3 1 3x2

x Pxxc

2 12
1.5 0
1 2
0.5 0.75

0 0
0.5 0.5
1 0
1.5 6.75

Now Try Exercise 35 ■

A table of values is most easily calcu-
lated by using a programmable cal-
culator or a graphing calculator. See 
Appendix D, Using the TI-83/84 Graph-
ing Calculator, for speci!c instructions. 
Go to www.stewartmath.com.
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262 CHAPTER 3 ■ Polynomial and Rational Functions

EXAMPLE 7 ■ Finding Zeros and Graphing a Polynomial Function
Let P1x 2  x3  2x2  4x  8.

(a) Find the zeros of P.   (b) Sketch a graph of P.

SOLUTION

(a) To find the zeros, we factor completely.

 P1x 2  x3  2x2  4x  8

  x21x  2 2  41x  2 2     Group and factor

  1x2  4 2 1x  2 2     Factor x  2

  1x  2 2 1x  2 2 1x  2 2     Difference of squares

  1x  2 2 1x  2 2 2     Simplify

  Thus the zeros are x  2 and x  2.

(b)  The x-intercepts are x  2 and x  2. The y-intercept is P10 2  8. The table 
gives additional values of P1x 2 .

     Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior.

yS  as xS   and  yS as xS

  We connect the points by a smooth curve to complete the graph in Figure 10.

y

0 x1

5

FIGURE 10 
P1x 2  x3  2x2  4x  8

x Pxxc

3 25
2 0
1 9

0 8
1 3
2 0
3 5

Now Try Exercise 37 ■

■ Shape of the Graph Near a Zero
Although x  2 is a zero of the polynomial in Example 7, the graph does not cross the 
x-axis at the x-intercept 2. This is because the factor 1x  2 2 2 corresponding to that 
zero is raised to an even power, so it doesn’t change sign as we test points on either side 
of 2. In the same way the graph does not cross the x-axis at x  0 in Example 6.

DISCOVERY PROJECT

Bridge Science

If you want to build a bridge, how can you be sure that your bridge design is 
strong enough to support the cars that will drive over it? In this project we per-
form a simple experiment using paper “bridges” to collect data on the weight 
our bridges can support. We model the data with linear and power functions to 
determine which  model best !ts the data. The model we obtain allows us to 
predict the strength of a large bridge before it is built. You can !nd the project 
at www.stewartmath.com. 
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 263

In general, if c is a zero of P and the corresponding factor x  c occurs exactly m 
times in the factorization of P, then we say that c is a zero of multiplicity m. By con-
sidering test points on either side of the x-intercept c, we conclude that the graph 
crosses the x-axis at c if the multiplicity m is odd and does not cross the x-axis if m is 
even. Moreover, it can be shown by using calculus that near x  c the graph has the 
same general shape as the graph of y  A1x  c 2m.

SHAPE OF THE GRAPH NEAR A ZERO OF MULTIPLICITY m

If c is a zero of P of multiplicity m, then the shape of the graph of P near c is as 
 follows.

Multiplicity of c Shape of the graph of P near the x-intercept c

m odd, m  1

 

OR

y

xc

y

xc

OR

y

xc

y

xcm even, m  1

EXAMPLE 8 ■ Graphing a Polynomial Function Using Its Zeros
Graph the polynomial P1x 2  x41x  2 2 31x  1 2 2.

SOLUTION  The zeros of P are 1, 0, and 2 with multiplicities 2, 4, and 3,  respectively:

P1x 2  x41x  2 2 31x  1 2 2
The zero 2 has odd multiplicity, so the graph crosses the x-axis at the x-intercept 2. 
But the zeros 0 and 1 have even multiplicity, so the graph does not cross the x-axis 
at the x-intercepts 0 and 1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has the 
 following end behavior:

yS  as xS   and  yS as xS

With this information and a table of values we sketch the graph in Figure 11.

y

0 x
1

5Even
multiplicities

Odd multiplicity

FIGURE 11 P1x 2  x41x  2 2 31x  1 2 2

x Pxxc

1.3 9.2
1 0
0.5 3.9

0 0
1 4
2 0
2.3 8.2

Now Try Exercise 29 ■

0 is a zero of 
multiplicity 4

2 is a zero of 
multiplicity 3

–1 is a zero of 
multiplicity 2
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264 CHAPTER 3 ■ Polynomial and Rational Functions

■ Local Maxima and Minima of Polynomials
Recall from Section 2.3 that if the point 1a, f 1a 22  is the highest point on the graph 
of f within some viewing rectangle, then f 1a 2  is a local maximum value of f, and if 1b,  f 1b 22  is the lowest point on the graph of f within a viewing rectangle, then f 1b 2  
is a local minimum value (see Figure 12). We say that such a point 1a, f 1a 22  is a  
local maximum point on the graph and that 1b, f 1b 22  is a local minimum point. 
The local maximum and minimum points on the graph of a function are called its 
local extrema.

0 a b

Ób, f(b)Ô
Local minimum point

Óa, f(a)Ô
Local maximum point

y=Ï

x

y

FIGURE 12

For a polynomial function the number of local extrema must be less than the degree, 
as the following principle indicates. (A proof of this principle requires calculus.)

LOCAL EXTREMA OF POLYNOMIALS

If P1x 2  anxn  an1x
n1  . . .  a1x  a0 is a polynomial of degree n, then 

the graph of P has at most n  1 local extrema.

A polynomial of degree n may in fact have fewer than n  1 local extrema. For  
example, P1x 2  x5 (graphed in Figure 1) has no local extrema, even though it is of 
degree 5. The preceding principle tells us only that a polynomial of degree n can have 
no more than n  1 local extrema.

EXAMPLE 9 ■ The Number of Local Extrema
Graph the polynomial and determine how many local extrema it has.

(a) P11x 2  x4  x3  16x2  4x  48

(b) P21x 2  x5  3x4  5x3  15x2  4x  15    
(c) P31x 2  7x4  3x2  10x

SOLUTION  The graphs are shown in Figure 13.

(a)  P1 has two local minimum points and one local maximum point, for a total of 
three local extrema.

(b)  P2 has two local minimum points and two local maximum points, for a total of 
four local extrema.

(c) P3 has just one local extremum, a local minimum.
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 265

100

_100

_5 5

(a)

100

_100

_5 5

(b)

100

_100

_5 5

P⁄(x)=x¢+x£-16≈-4x+48 P¤(x)=x∞+3x¢-5x£-15≈+4x-15 P‹(x)=7x¢+3≈-10x
(c)

FIGURE 13

Now Try Exercises 65 and 67 ■

With a graphing calculator we can quickly draw the graphs of many functions at 
once, on the same viewing screen. This allows us to see how changing a value in the 
definition of the functions affects the shape of its graph. In the next example we apply 
this principle to a family of third-degree polynomials.

EXAMPLE 10 ■ A Family of Polynomials
Sketch the family of polynomials P1x 2  x3  cx2 for c  0, 1, 2, and 3. How does 
changing the value of c affect the graph?

SOLUTION  The polynomials

P01x 2  x3       P11x 2  x3  x2

P21x 2  x3  2x2      P31x 2  x3  3x2

are graphed in Figure 14. We see that increasing the value of c causes the graph to 
develop an increasingly deep “valley” to the right of the y-axis, creating a local maxi-
mum at the origin and a local minimum at a point in Quadrant IV. This local mini-
mum moves lower and farther to the right as c increases. To see why this happens, 
factor P1x 2  x21x  c 2 . The polynomial P has zeros at 0 and c, and the larger c 
gets, the farther to the right the minimum between 0 and c will be.

Now Try Exercise 75 ■

10

_10

_2 4

c=0 c=1 c=2 c=3

FIGURE 14 A family of polynomials 
P1x 2  x3  cx2

CONCEPTS
 1. Only one of the following graphs could be the graph of a 

polynomial function. Which one? Why are the others not 
graphs of polynomials?

I
y

x

II
y

x

III
y

x

IV
y

x

 2. Describe the end behavior of each polynomial.
(a) y  x3  8x2  2x  15

 End behavior:  yS     as  xS 

  yS     as  xS

3.2 EXERCISES
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266 CHAPTER 3 ■ Polynomial and Rational Functions

(b) y  2x4  12x  100

 End behavior: yS     as  xS 

    yS     as  xS

 3. If c is a zero of the polynomial P, then
(a) P1c 2     .
(b) x  c is a   of P1x 2 .
(c) c is a(n)   -intercept of the graph of P.

 4. Which of the following statements couldn’t possibly be true 
about the polynomial function P?
(a) P has degree 3, two local maxima, and two local minima.
(b) P has degree 3 and no local maxima or minima.
(c) P has degree 4, one local maximum, and no local 

minima.

SKILLS
5–8 ■ Transformations of Monomials  Sketch the graph of each 
function by transforming the graph of an appropriate function of 
the form y  xn from Figure 1. Indicate all x- and y-intercepts on 
each graph.

 5. (a) P1x 2  x2  4 (b) Q1x 2  1x  4 2 2
(c) P1x 2  2x2  3 (d) P1x 2  1x  2 2 2

 6. (a) P1x 2  x4  16 (b) P1x 2  1x  5 2 4
(c) P1x 2  5x4  5 (d) P1x 2  1x  5 2 4

 7. (a) P1x 2  x3  8 (b) Q1x 2  x3  27
(c) R1x 2  1x  2 2 3 (d) S1x 2  1

2 1x  1 2 3  4

 8. (a) P1x 2  1x  3 2 5 (b) Q1x 2  21x  3 2 5  64
(c) R1x 2   

1
2 1x  2 2 5 (d) S1x 2   

1
2 1x  2 2 5  16

9–14 ■ End Behavior  A polynomial function is given.  
(a) Describe the end behavior of the polynomial function.  
(b) Match the polynomial function with one of the graphs I–VI.

 9. P1x 2  x 1x2  4 2  10. Q1x 2  x21x2  4 2
 11. R1x 2  x5  5x3  4x 12. S1x 2  1

2 x6  2x4

 13. T1x 2  x4  2x3 14. U1x 2  x3  2x2

I IIy

x0 1
1

y

x0 1
1

III IVy

x0 1
1

y

x0 1

1

y

x0 1
1

V VI y

x0 1

1

15–30 ■ Graphing Factored Polynomials  Sketch the graph of 
the polynomial function. Make sure your graph shows all intercepts 
and exhibits the proper end behavior.

15. P1x 2  1x  1 2 1x  2 2
16. P1x 2  12  x 2 1x  5 2
17. P1x 2  x1x  3 2 1x  2 2
18. P1x 2  x 1x  3 2 1x  2 2
19. P1x 2  12x  1 2 1x  1 2 1x  3 2
20. P1x 2  1x  3 2 1x  2 2 13x  2 2
 21. P1x 2  1x  2 2 1x  1 2 1x  2 2 1x  3 2
 22. P1x 2  x1x  1 2 1x  1 2 12  x 2
 23. P1x 2  2x1x  2 2 2
 24. P1x 2  1

5 x 1x  5 2 2
 25. P1x 2  1x  2 2 1x  1 2 212x  3 2
 26. P1x 2  1x  1 2 21x  1 2 31x  2 2
 27. P1x 2  1

12 1x  2 2 21x  3 2 2
 28. P1x 2  1x  1 2 21x  2 2 3
 29. P1x 2  x31x  2 2 1x  3 2 2
 30. P1x 2  1x  3 2 21x  1 2 2
31–44 ■ Graphing Polynomials  Factor the polynomial and use 
the factored form to find the zeros. Then sketch the graph.

31. P1x 2  x3  x2  6x 32. P1x 2  x3  2x2  8x

33. P1x 2  x3  x2  12x 34. P1x 2  2x3  x2  x

35. P1x 2  x4  3x3  2x2
 36. P1x 2  x5  9x3

37. P1x 2  x3  x2  x  1

 38. P1x 2  x3  3x2  4x  12

39. P1x 2  2x3  x2  18x  9

40. P1x 2  1
8 12x4  3x3  16x  24 2 2

41. P1x 2  x4  2x3  8x  16

42. P1x 2  x4  2x3  8x  16

43. P1x 2  x4  3x2  4 44. P1x 2  x6  2x3  1

45–50 ■ End Behavior  Determine the end behavior of P. Com-
pare the graphs of P and Q in large and small viewing rectangles, 
as in Example 3(b).

45. P1x 2  3x3  x2  5x  1; Q1x 2  3x3

46. P1x 2  1
8 x3  1

4 x2  12x; Q1x 2  1
8 x3

47. P1x 2  x4  7x2  5x  5; Q1x 2  x4
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 267

48. P1x 2  x5  2x2  x; Q1x 2  x5

49. P1x 2  x11  9x9; Q1x 2  x11

50. P1x 2  2x2  x12; Q1x 2  x12

51–54 ■ Local Extrema  The graph of a polynomial function is 
given. From the graph, find (a) the x- and y-intercepts, and (b) the 
coordinates of all  local extrema.

51. P1x 2  x2  4x 52. P1x 2  2
9 x3  x2

y

0 1

1
x

 

0

y

x1
1

53. P1x 2  1
2 x3  3

2 x  1 54. P1x 2  1
9 x4  4

9 
x3

0

y

x
11

  

0

y

x2
1

55–62 ■ Local Extrema  Graph the polynomial in the given 
viewing rectangle. Find the coordinates of all local extrema. State 
each answer rounded to two decimal places. State the domain and 
range.

 55. y  x2  8x,  34, 124 by 350, 304
 56. y  x3  3x2,  32, 54 by 310, 104
 57. y  x3  12x  9,  35, 54 by 330, 304
 58. y  2x3  3x2  12x  32,  35, 54 by 360, 304
 59. y  x4  4x3,  35, 54 by 330, 304
 60. y  x4  18x2  32,  35, 54 by 3100, 1004
 61. y  3x5  5x3  3,  33, 34 by 35, 104
 62. y  x5  5x2  6,  33, 34 by 35, 104
63–72 ■ Number of Local Extrema  Graph the polynomial, and 
determine how many local maxima and minima it has.

 63. y  2x2  3x  5 64. y  x3  12x

65. y  x3  x2  x 66. y  6x3  3x  1

 67. y  x4  5x2  4

 68. y  1.2x5  3.75x4  7x3  15x2  18x

69. y  1x  2 2 5  32 70. y  1x2  2 2 3
71. y  x8  3x4  x 72. y  1

3 x7  17x2  7

73–78 ■ Families of Polynomials  Graph the family of polyno-
mials in the same viewing rectangle, using the given values of c. 
Explain how changing the value of c affects the graph.

73. P1x 2  cx3; c  1, 2, 5, 12

74. P1x 2  1x  c 2 4; c  1, 0, 1, 2

75. P1x 2  x4  c; c  1, 0, 1, 2

76. P1x 2  x3  cx; c  2, 0, 2, 4

77. P1x 2  x4  cx; c  0, 1, 8, 27

78. P1x 2  xc; c  1, 3, 5, 7

SKILLS Plus
 79. Intersection Points of Two Polynomials  

(a) On the same coordinate axes, sketch graphs (as accu-
rately as possible) of the functions

y  x3  2x2  x  2  and  y  x2  5x  2

(b) On the basis of your sketch in part (a), at how many 
points do the two graphs appear to intersect?

(c) Find the coordinates of all intersection points.

 80. Power Functions  Portions of the graphs of y  x2, y  x3, 
y  x4, y  x5, and y  x6 are plotted in the figures. Deter-
mine which function  belongs to each graph.

y

0 x1

1
y

0 x1

1

 81. Odd and Even Functions  Recall that a function f is odd if 
f 1x 2  f 1x 2  or even if f 1x 2  f 1x 2  for all real x.
(a)  Show that a polynomial P1x 2  that contains only odd 

powers of x is an odd function.
(b)  Show that a polynomial P1x 2  that contains only even 

powers of x is an even function.
(c)  Show that if a polynomial P1x 2  contains both odd and  

even powers of x, then it is neither an odd nor an even 
function.

(d) Express the function

P1x 2  x5  6x3  x2  2x  5

 as the sum of an odd function and an even function.

 82. Number of Intercepts and Local Extrema  
(a)  How many x-intercepts and how many local extrema 

does the polynomial P1x 2  x3  4x have?
(b)  How many x-intercepts and how many local extrema 

does the polynomial Q1x 2  x3  4x have?
(c)  If a  0, how many x-intercepts and how many local 

extrema does each of the polynomials P1x 2  x3  ax 
and Q1x 2  x3  ax have? Explain your answer.
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268 CHAPTER 3 ■ Polynomial and Rational Functions

83–86 ■ Local Extrema  These exercises involve local maxima 
and minima of polynomial functions. 

 83. (a)  Graph the function P1x 2  1x  1 2 1x  3 2 1x  4 2  and 
find all local extrema, correct to the nearest tenth.

(b) Graph the function

Q1x 2  1x  1 2 1x  3 2 1x  4 2  5

  and use your answers to part (a) to find all local extrema, 
correct to the nearest tenth.

 84. (a)  Graph the function P1x 2  1x  2 2 1x  4 2 1x  5 2  and 
determine how many local extrema it has.

(b) If a  b  c, explain why the function

P1x 2  1x  a 2 1x  b 2 1x  c 2
 must have two local extrema.

 85. Maximum Number of Local Extrema  What is the smallest 
possible degree that the polynomial whose graph is shown 
can have? Explain.

0 x

y

 86. Impossible Situation?  Is it possible for a polynomial to have 
two local maxima and no local minimum? Explain.

APPLICATIONS
 87. Market Research  A market analyst working for a small- 

appliance manufacturer finds that if the firm produces and  
sells x blenders annually, the total profit (in dollars) is

P1x 2  8x  0.3x2  0.0013x3  372

  Graph the function P in an appropriate viewing rectangle and 
use the graph to answer the following questions.
(a)  When just a few blenders are manufactured, the firm 

loses money (profit is negative). (For example, 
P110 2  263.3, so the firm loses $263.30 if it pro-
duces and sells only 10 blenders.) How many blenders 
must the firm produce to break even?

(b)  Does profit increase indefinitely as more blenders are 
produced and sold? If not, what is the largest possible 
profit the firm could have?

 88. Population Change  The rabbit population on a small island 
is observed to be given by the function

P1 t 2  120t  0.4t4  1000

  where t is the time (in months) since observations of the  
island began.
(a)  When is the maximum population attained, and what is 

that maximum population?

(b)  When does the rabbit population disappear from the  island?

t

P

0

 89. Volume of a Box  An open box is to be constructed from a 
piece of cardboard 20 cm by 40 cm by cutting squares of side 
length x from each corner and folding up the sides, as shown 
in the figure.
(a) Express the volume V of the box as a function of x.
(b)  What is the domain of V? (Use the fact that length and 

volume must be positive.)
(c)  Draw a graph of the function V, and use it to estimate the 

maximum volume for such a box.

20 cm

40 cm
x x

 90. Volume of a Box  A cardboard box has a 
square base, with each edge of the base 
having length x inches, as shown in the 
figure. The total length of all 12 edges of 
the box is 144 in.
(a)  Show that the volume of the box is 

given by the function 
V1x 2  2x2118  x 2 .

(b)  What is the domain of V? (Use the 
fact that length and  volume must be 
positive.)

(c)  Draw a graph of the function V and 
use it to estimate the maximum vol-
ume for such a box.

DISCUSS ■ DISCOVER ■ PROVE ■ WRITE
 91. DISCOVER: Graphs of Large Powers  Graph the functions  

y  x2, y  x3, y  x4, and y  x5, for 1  x  1, on  
the same coordinate axes. What do you think the graph of  
y  x100 would look like on this same interval? What about  
y  x101? Make a table of values to confirm your answers.

 92. DISCUSS ■ DISCOVER: Possible Number of Local Extrema   
Is it possible for a third-degree polynomial to have exactly 
one local extremum? Can a fourth-degree polynomial have 
exactly two local extrema? How many local extrema can 
polynomials of third, fourth, fifth, and sixth degree have? 
(Think about the end behavior of such polynomials.) Now 
give an example of a polynomial that has six local extrema.
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