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66. Maximizing Profit A community bird-watching society
makes and sells simple bird feeders to raise money for its
conservation activities. The materials for each feeder cost $6,
and the society sells an average of 20 per week at a price of

DISCUSS DISCOVER PROVE WRITE

67. DISCOVER: Vertex and x-Intercepts We know that the graph
of the quadratic function f(x) = (x — m)(x — n) is a parab-

$10 each. The society has been considering raising the price,

so it conducts a survey and finds that for every dollar

increase, it will lose 2 sales per week.

(a) Find a function that models weekly profit in terms of
price per feeder.

(b) What price should the society charge for each feeder

ola. Sketch a rough graph of what such a parabola would
look like. What are the x-intercepts of the graph of f? Can
you tell from your graph the x-coordinate of the vertex in
terms of m and n? (Use the symmetry of the parabola.) Con-
firm your answer by expanding and using the formulas of this
section.

to maximize profits? What is the maximum weekly
profit?
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Polynomial Functions

In this section we study polynomial functions of any degree. But before we work with
polynomial functions, we must agree on some terminology.

POLYNOMIAL FUNCTIONS

A polynomial function of degree = is a function of the form
Px)=ax"+ta, x" "+ - +tax+a

where 7 is a nonnegative integer and a, # 0.

The numbers ay, a,, a,, - . . , a, are called the coefficients of the polynomial.
The number ¢, is the constant coefficient or constant term.

The number a,, the coefficient of the highest power, is the leading coefficient,
and the term a,x" is the leading term.

We often refer to polynomial functions simply as polynomials. The following poly-
nomial has degree 5, leading coefficient 3, and constant term —6.

Leading Degree 5
coefficient 3

Constant term —6

3+t =2+ X2+ Tx—6
Leading term 3x°

Coefficients 3, 6, —2, 1, 7, and —6
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SECTION 3.2 = Polynomial Functions and Their Graphs 255

The table lists some more examples of polynomials.

Polynomial Degree Leading term Constant term
P(x) =4x—7 1 4x —7
P(x) = x*+ x 2 x? 0
P(x) = 2x* — 6x* + 10 3 2x° 10
P(x) = —5x*+x—2 4 —5x* -2

If a polynomial consists of just a single term, then it is called a monomial. For example,
P(x) = x* and Q(x) = —6x° are monomials.

Graphing Basic Polynomial Functions

The simplest polynomial functions are the monomials P(x) = x", whose graphs are
shown in Figure 1. As the figure suggests, the graph of P(x) = x" has the same general
shape as the graph of y = x* when 7 is even and the same general shape as the graph
of y = x* when n is odd. However, as the degree n becomes larger, the graphs become
flatter around the origin and steeper elsewhere.

y y y y YA
1 1 1 1 1+
0 1 X 0 1 x 0 1 X ‘ 0 X Y 0 i X

—_
=

(@) y=x (b) y=x? © y=x @ y=x* (e y=ux

FIGURE 1 Graphs of monomials

EXAMPLE 1 = Transformations of Monomials

Sketch graphs of the following functions.

(a) P(x) = —x°
() R(x)

Mathematics in the Modern World

—2x3 + 4

(b) O(x) = (x — 2)*

Splines

?j/ Ko N

A spline is a long strip of wood that is curved while held fixed at certain
points. In the old days shipbuilders used splines to create the curved
shape of a boat’s hull. Splines are also used to make the curves of a
piano, a violin, or the spout of a teapot.

Mathematicians discovered that the shapes of splines can be
obtained by piecing together parts of polynomials. For example, the
graph of a cubic polynomial can be made to fit specified points by

adjusting the coefficients of the polynomial (see Example 10,
page 265).

Curves obtained in this way are called cubic splines. In modern com-
puter design programs, such as Adobe Illustrator or Microsoft Paint, a
curve can be drawn by fixing two points, then using the mouse to drag
one or more anchor points. Moving the anchor points amounts to adjust-
ing the coefficients of a cubic polynomial.
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256 CHAPTER3 = Polynomial and Rational Functions

FIGURE 2

SOLUTION We use the graphs in Figure 1 and transform them using the techniques of

Section 2.6.

(a) The graph of P(x) = —x? is the reflection of the graph of y = x? in the x-axis, as
shown in Figure 2(a) below.

(b) The graph of Q(x) = (x — 2)*is the graph of y = x* shifted to the right 2 units,
as shown in Figure 2(b).

(c) We begin with the graph of y = x°. The graph of y = —2x° is obtained by stretch-
ing the graph vertically and reflecting it in the x-axis (see the dashed blue graph
in Figure 2(c)). Finally, the graph of R(x) = —2x° + 4 is obtained by shifting
upward 4 units (see the red graph in Figure 2(c)).

(b) (c)

® . Now Try Exercise 5 |

Graphs of Polynomial Functions: End Behavior

The graphs of polynomials of degree O or 1 are lines (Sections 1.10 and 2.5), and the
graphs of polynomials of degree 2 are parabolas (Section 3.1). The greater the degree
of a polynomial, the more complicated its graph can be. However, the graph of a poly-
nomial function is continuous. This means that the graph has no breaks or holes (see
Figure 3). Moreover, the graph of a polynomial function is a smooth curve; that is, it
has no corners or sharp points (cusps) as shown in Figure 3.

y y

\// cusp smooth and smooth and
continuous continuous
hole
break
corner

/] x /] X | x

Not the graph of a Not the graph of a Graph of a polynomial Graph of a polynomial

polynomial function polynomial function function function
FIGURE 3

The domain of a polynomial function is the set of all real numbers, so we can sketch
only a small portion of the graph. However, for values of x outside the portion of the
graph we have drawn, we can describe the behavior of the graph.

The end behavior of a polynomial is a description of what happens as x becomes
large in the positive or negative direction. To describe end behavior, we use the follow-
ing arrow notation.

Symbol Meaning
X —> x goes to infinity; that is, x increases without bound
X — —© x goes to negative infinity; that is, x decreases without bound
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SECTION 3.2 = Polynomial Functions and Their Graphs 257

For example, the monomial y = x? in Figure 1(b) has the following end behavior.
y—>o as x—>o and y—>o® as x— —ow

The monomial y = x* in Figure 1(c) has the following end behavior.
y—>o as x—© and y—>—o© as x——w

For any polynomial the end behavior is determined by the term that contains the high-
est power of x, because when x is large, the other terms are relatively insignificant in
size. The following box shows the four possible types of end behavior, based on the
highest power and the sign of its coefficient.

END BEHAVIOR OF POLYNOMIALS

The end behavior of the polynomial P(x) = a,x" + a,_x" ' + -+ + a;x + a, is determined by the degree n and the
sign of the leading coefficient a,, as indicated in the following graphs.

P has odd degree P has even degree
y—> coas y—> ®as y —> ©as
y— oas X —> —0 X — — X —>
YA x—o YA / YA / YA
TS \7/ \ Lt
. S . . - e S
K4 ol \~.—’, N RN S \
Sde
/ “ 1 / \
0 x 0 X Y0 ,/ X 0 X
A N ‘
- A 4
No2
y—)-OOaS y—>—ooas y—>—ooas y—>—00as
X — —00 X —> 00 X —> —00 X —>
Leading coefficient positive Leading coefficient negative Leading coefficient positive Leading coefficient negative

EXAMPLE 2 © End Behavior of a Polynomial
Determine the end behavior of the polynomial

P(x) = —2x* + 5x* + 4x — 7

SOLUTION The polynomial P has degree 4 and leading coefficient —2. Thus P has
even degree and negative leading coefficient, so it has the following end behavior.

y—>—® as x—>» and y—>—® as x—>—»

The graph in Figure 4 illustrates the end behavior of P.
30

3,,#/,\,,5

y—> — as

y—> —©as Y —> 0

X — —00

-50
FIGURE4 P(x) = —2x* + 5x° + 4x — 7

®. Now Try Exercise 11 |
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258 CHAPTER3 = Polynomial and Rational Functions

-1
FIGURE 5
P(x) = 3x° — 5x* + 2x
0O(x) = 3x°

EXAMPLE 3 = End Behavior of a Polynomial

(a) Determine the end behavior of the polynomial P(x) = 3x° — 5x* + 2x.

(b) Confirm that P and its leading term Q(x) = 3x° have the same end behavior by
graphing them together.

SOLUTION

(a) Since P has odd degree and positive leading coefficient, it has the following end
behavior.

y—>o® as x—w» and y—>—o® as x— —®

(b) Figure 5 shows the graphs of P and Q in progressively larger viewing rectangles.
The larger the viewing rectangle, the more the graphs look alike. This confirms
that they have the same end behavior.

50 10,000

T

—50 -10,000

®. Now Try Exercise 45 |

To see algebraically why P and Q in Example 3 have the same end behavior, factor
P as follows and compare with Q.

5 2
P(x) = 3x5(1 e + 3x4> O(x) = 3%’
When x is large, the terms 5/(3x?) and 2/(3x*) are close to 0 (see Exercise 90 on
page 12). So for large x we have

P(x) = 3x°(1 — 0 — 0) = 3x° = Q(x)

So when x is large, P and Q have approximately the same values. We can also see this
numerically by making a table like the one shown below.

x P(x) 0(x)

15 2,261,280 2,278,125
30 72,765,060 72,900,000
50 | 936,875,100 | 937,500,000

By the same reasoning we can show that the end behavior of any polynomial is de-
termined by its leading term.

Using Zeros to Graph Polynomials

If P is a polynomial function, then c is called a zero of P if P(¢) = 0. In other words,
the zeros of P are the solutions of the polynomial equation P(x) = 0. Note that if
P(c) = 0, then the graph of P has an x-intercept at x = ¢, so the x-intercepts of the
graph are the zeros of the function.
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SECTION 3.2 = Polynomial Functions and Their Graphs 259

REAL ZEROS OF POLYNOMIALS
If P is a polynomial and c is a real number, then the following are equivalent:

1. cis a zero of P.
2. x = cis a solution of the equation P(x) = 0.
3. x — cis a factor of P(x).

4. c is an x-intercept of the graph of P.

To find the zeros of a polynomial P, we factor and then use the Zero-Product Prop-
erty (see page 48). For example, to find the zeros of P(x) = x> + x — 6, we factor P
to get

P(x) = (x —2)(x + 3)
From this factored form we easily see that

1. 21is a zero of P.
2. x = 2 is a solution of the equation x> + x — 6 = 0.
3. x — 2 is a factor of x> + x — 6.
4. 2 is an x-intercept of the graph of P.
The same facts are true for the other zero, —3.
The following theorem has many important consequences. (See, for instance, the

Discovery Project referenced on page 276.) Here we use it to help us graph polynomial
functions.

INTERMEDIATE VALUE THEOREM FOR POLYNOMIALS

If P is a polynomial function and P(a) and P(b) have opposite signs, then
there exists at least one value ¢ between a and b for which P(c¢) = 0.

We will not prove this theorem, but Figure 6 shows why it is intuitively plausible.

One important consequence of this theorem is that between any two successive zeros
the values of a polynomial are either all positive or all negative. That is, between two suc-
cessive zeros the graph of a polynomial lies entirely above or entirely below the x-axis. To

Pla)+ see why, suppose ¢, and ¢, are successive zeros of P. If P has both positive and negative
A values between ¢, and c,, then by the Intermediate Value Theorem, P must have another
zero between ¢, and ¢,. But that’s not possible because ¢, and ¢, are successive zeros. This
FIGURE 6 observation allows us to use the following guidelines to graph polynomial functions.

<‘~
>~ ———
=Y

GUIDELINES FOR GRAPHING POLYNOMIAL FUNCTIONS

1. Zeros. Factor the polynomial to find all its real zeros; these are the
x-intercepts of the graph.

2. Test Points. Make a table of values for the polynomial. Include test points to
determine whether the graph of the polynomial lies above or below the x-axis
on the intervals determined by the zeros. Include the y-intercept in the table.

3. End Behavior. Determine the end behavior of the polynomial.

4. Graph. Plot the intercepts and other points you found in the table. Sketch
a smooth curve that passes through these points and exhibits the required
end behavior.
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Mathematics in the Modern World

© 3DProfi/Shutterstock.com

Automotive Design

Computer-aided design (CAD) has com-
pletely changed the way in which car
companies design and manufacture cars.
Before the 1980s automotive engineers
would build a full-scale “nuts and bolts”
model of a proposed new car; this was
really the only way to tell whether the
design was feasible. Today automotive
engineers build a mathematical model,
one that exists only in the memory of a
computer. The model incorporates all the
main design features of the car. Certain
polynomial curves, called splines (see
page 255), are used in shaping the body
of the car. The resulting “mathematical
car” can be tested for structural stability,
handling, aerodynamics, suspension
response, and more. All this testing is
done before a prototype is built. As you
can imagine, CAD saves car manufactur-
ers millions of dollars each year. More
importantly, CAD gives automotive engi-
neers far more flexibility in design;
desired changes can be created and
tested within seconds. With the help of
computer graphics, designers can see
how good the “mathematical car” looks
before they build the real one. Moreover,
the mathematical car can be viewed from
any perspective; it can be moved,
rotated, or seen from the inside. These
manipulations of the car on the com-
puter monitor translate mathematically
into solving large systems of linear
equations.

Polynomial and Rational Functions

EXAMPLE 4
Sketch the graph of the polynomial function P(x) = (x + 2)(x — 1)(x — 3).

Using Zeros to Graph a Polynomial Function

SOLUTION The zeros are x = —2, 1, and 3. These determine the intervals (—o, —2),
(=2,1),(1,3), and (3, ). Using test points in these intervals, we get the informa-
tion in the following sign diagram (see Section 1.8).

Test point Test point Test point Test point
x=-3 x=-1 x=2 x=4
P(-3)<0 P(-1)>0 P(2)<0 P3)>0
-2 1 3
Sign of | | | g
P(x) = (x +2)(x = I)(x = 3) — + - +
Graph of P below above below above
X-axis Xx-axis X-axis X-axis

Plotting a few additional points and connecting them with a smooth curve helps us to
complete the graph in Figure 7.

YA T .
* ) Test point szzt)[fglt
Test point — -3 —24 PD>0 1
-2 0
Test point — -1 8
0 6
1 0
Test point — 2 —4 |
3 0 Test point Test point
Test point — 4 18 P(-3)<0 P(2)<0
FIGURE7 P(x) = (x + 2)(x — 1)(x — 3)
® . Now Try Exercise 17 |

EXAMPLE 5

Let P(x) = x* — 2x* — 3x.
(a) Find the zeros of P.

Finding Zeros and Graphing a Polynomial Function

(b) Sketch a graph of P.

SOLUTION
(a) To find the zeros, we factor completely.

P(x) = x* — 2x* — 3x
=x(x* — 2x — 3)
=x(x = 3)(x+ 1)

Factor x
Factor quadratic

Thus the zeros are x = 0, x = 3, and x = —1.

(b) The x-intercepts are x = 0, x = 3, and x = —1. The y-intercept is P(0) = 0. We
make a table of values of P(x), making sure that we choose test points between
(and to the right and left of) successive zeros.

Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

y—>o© as x— and y—>—w as Xx— —©
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A table of values is most easily calcu-
lated by using a programmable cal-
culator or a graphing calculator. See
Appendix D, Using the TI-83/84 Graph-
ing Calculator, for specific instructions.
Go to www.stewartmath.com.

SECTION 3.2

Polynomial Functions and Their Graphs 261

We plot the points in the table and connect them by a smooth curve to complete

the graph, as shown in Figure 8.

Test point —
Test point —

Test point —

Test point —

x P(x)
-2 ~10
-1 0
_1 7
2 8
0 0
1 —4
2 —6
3 0
4 20

. Now Try Exercise 31

EXAMPLE 6
Let P(x) = —2x* — x* + 3x%
(a) Find the zeros of P.

FIGURE8 P(x) = x* — 2x* — 3x

Finding Zeros and Graphing a Polynomial Function

(b) Sketch a graph of P.

SOLUTION
(a) To find the zeros, we factor completely.
P(x) = —2x* — x* + 3x?
= —x’(2x* + x — 3) Factor —x*
=—x*2x+3)(x— 1) Factor quadratic
Thus the zeros are x = 0, x = —%, and x = 1.

(b) The x-intercepts are x = 0, x = —3, and x = 1. The y-intercept is P(0) = 0. We

make a table of values of P(x), making sure that we choose test points between
(and to the right and left of) successive zeros.

Since P is of even degree and its leading coefficient is negative, it has the fol-
lowing end behavior.

y—> =

as x—>x

and y—>—®© as x— —o

We plot the points from the table and connect the points by a smooth curve to

complete the graph in Figure 9.

x P(x)
-2 -12
—1.5 0
—1 2
—0.5 0.75

0 0

0.5 0.5

1 0
1.5 —6.75

® . Now Try Exercise 35

FIGURE9 P(x) = —2x* — x* + 3x?
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262 CHAPTER3 = Polynomial and Rational Functions

EXAMPLE 7 = Finding Zeros and Graphing a Polynomial Function

Let P(x) = x* — 2x* — 4x + 8.
(a) Find the zeros of P. (b) Sketch a graph of P.

SOLUTION
(a) To find the zeros, we factor completely.

P(x) =x* —2x* —4x + 8
=x}(x —2) — 4(x —2) Group and factor

=(x* — 4)(x — 2) Factor x — 2
=x+2)(x—2)(x—2) Difference of squares
=(x+2)(x —2)? Simplify

Thus the zeros are x = —2 and x = 2.

(b) The x-intercepts are x = —2 and x = 2. The y-intercept is P(0) = 8. The table
gives additional values of P(x).
Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior.

y—>© as xX—>® and y—>—w as x—> —©

We connect the points by a smooth curve to complete the graph in Figure 10.

x P(x) Y
-3 —25
-2 0
-1 9
0 8 1 )
1 3
2 0
3 5
FIGURE 10
P(x) = x> —2x* —4x + 8
® . Now Try Exercise 37 -

Shape of the Graph Near a Zero

Although x = 2 is a zero of the polynomial in Example 7, the graph does not cross the
x-axis at the x-intercept 2. This is because the factor (x — 2)? corresponding to that
zero is raised to an even power, so it doesn’t change sign as we test points on either side
of 2. In the same way the graph does not cross the x-axis at x = 0 in Example 6.

DISCOVERY PROJECT

H Bridge Science

If you want to build a bridge, how can you be sure that your bridge design is
strong enough to support the cars that will drive over it? In this project we per-
form a simple experiment using paper “bridges” to collect data on the weight
g our bridges can support. We model the data with linear and power functions to
. determine which model best fits the data. The model we obtain allows us to
ase predict the strength of a large bridge before it is built. You can find the project
at www.stewartmath.com.
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SECTION 3.2 = Polynomial Functions and Their Graphs 263

In general, if c is a zero of P and the corresponding factor x — ¢ occurs exactly m
times in the factorization of P, then we say that c is a zero of multiplicity m. By con-
sidering test points on either side of the x-intercept ¢, we conclude that the graph
crosses the x-axis at ¢ if the multiplicity m is odd and does not cross the x-axis if m is
even. Moreover, it can be shown by using calculus that near x = ¢ the graph has the
same general shape as the graph of y = A(x — ¢)™

SHAPE OF THE GRAPH NEAR A ZERO OF MULTIPLICITY m

If ¢ is a zero of P of multiplicity m, then the shape of the graph of P near c is as
follows.

Multiplicity of ¢ Shape of the graph of P near the x-intercept ¢

modd, m > 1

meven, m > 1

y y
C X C X
y y
OR
c X (4 X

EXAMPLE 8 = Graphing a Polynomial Function Using Its Zeros
Graph the polynomial P(x) = x*(x — 2)*(x + 1)
SOLUTION The zeros of P are —1, 0, and 2 with multiplicities 2, 4, and 3, respectively:

0 is a zero of 2 is a zero of —1 is a zero of
multiplicity 4 multiplicity 3 multiplicity 2
P(x) = x*(x — 2)%(x + 1)?

The zero 2 has odd multiplicity, so the graph crosses the x-axis at the x-intercept 2.
But the zeros 0 and — 1 have even multiplicity, so the graph does not cross the x-axis
at the x-intercepts O and —1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has the
following end behavior:

y—>o© as x— ™ and y—>—w as x— —o©

With this information and a table of values we sketch the graph in Figure 11.

YA
5 -
x P(x) Even
multiplicities
—-1.3 -9.2
—1 0 0 X
-0.5 -39
0 0 Odd multiplicity
1 —4 T
2 0
2.3 8.2

FIGURE 11 P(x) = x*(x — 2)%(x + 1)?

® . Now Try Exercise 29 |
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264 CHAPTER3 = Polynomial and Rational Functions

Local Maxima and Minima of Polynomials

Recall from Section 2.3 that if the point (a, f(a)) is the highest point on the graph
of f within some viewing rectangle, then f(a) is a local maximum value of f, and if
(b, f(b)) is the lowest point on the graph of f within a viewing rectangle, then f(b)
is a local minimum value (see Figure 12). We say that such a point (a, f(a)) is a
local maximum point on the graph and that (b, f(b)) is a local minimum point.
The local maximum and minimum points on the graph of a function are called its
local extrema.

( Local maximum point

y = flx)

(b. (b))
Local minimum point/
/ 0 a b

FIGURE 12

=Y

For a polynomial function the number of local extrema must be less than the degree,
as the following principle indicates. (A proof of this principle requires calculus.)

LOCAL EXTREMA OF POLYNOMIALS

If P(x) = a,x" + a,_x""' + -+ + a;x + aq is a polynomial of degree n, then
the graph of P has at most n — 1 local extrema.

A polynomial of degree n may in fact have fewer than n — 1 local extrema. For

example, P(x) = x° (graphed in Figure 1) has no local extrema, even though it is of

@ degree 5. The preceding principle tells us only that a polynomial of degree n can have
no more than n — 1 local extrema.

EXAMPLE 9 © The Number of Local Extrema

Graph the polynomial and determine how many local extrema it has.
(@) Py(x) =x*+ x> —16x* — 4x + 48

(b) Py(x) = x° +3x* —5x° — 15x* + 4x — 15

(€) Py(x) =7x*+ 3x* — 10x

SOLUTION The graphs are shown in Figure 13.

a) P, has two local minimum points and one local maximum point, for a total of
1 p p
three local extrema.

(b) P, has two local minimum points and two local maximum points, for a total of
four local extrema.

(¢) P;has just one local extremum, a local minimum.
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100 100 100
=5 5 -5 5 =5 5
—100 —100 —100
(@) (b) (c)
P(x)=x*+ x> —16x> — 4x + 48 Py(x) = x>+ 3x* = 5x3 — 152> + 4x — 15 Py(x) = Tx* + 3x% — 10x
FIGURE 13
® . Now Try Exercises 65 and 67 u

With a graphing calculator we can quickly draw the graphs of many functions at
once, on the same viewing screen. This allows us to see how changing a value in the
definition of the functions affects the shape of its graph. In the next example we apply

this principle to a family of third-degree polynomials.

EXAMPLE 10 = A Family of Polynomials

Sketch the family of polynomials P(x) = x* — cx* for ¢ = 0, 1, 2, and 3. How does

changing the value of ¢ affect the graph?
9 SOLUTION The polynomials
4 Py(x) = x* Pi(x) =x* —x*

Py(x) = x* — 2x? Py(x) = x* — 3x?

are graphed in Figure 14. We see that increasing the value of ¢ causes the graph to

develop an increasingly deep “valley” to the right of the y-axis, creating a local maxi-
mum at the origin and a local minimum at a point in Quadrant IV. This local mini-
—10 mum moves lower and farther to the right as ¢ increases. To see why this happens,
FIGURE 14 A family of polynomials factor P(x) = x*(x — ¢). The polynomial P has zeros at 0 and ¢, and the larger ¢

P(x) = x* — ox? gets, the farther to the right the minimum between O and ¢ will be.

. Now Try Exercise 75

3.2 EXERCISES

CONCEPTS I Y

y ya
1. Only one of the following graphs could be the graph of a

polynomial function. Which one? Why are the others not
graphs of polynomials?

V

I II > >
y y ‘ X X
2. Describe the end behavior of each polynomial.
(@ y=x*—8x>+2x—15
End behavior: y— a3 x—> o
: I : y—> ___as x—>—»
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(b) y = —2x* + 12x + 100

End behavior: y— ___ as x—ce
y—> a3 x—>—®
3. If ¢ is a zero of the polynomial P, then / -
(@ P(c) = .
(b) x —cisa of P(x).
(¢) cisa(n) -intercept of the graph of P.
4. Which of the following statements couldn’t possibly be true 15-30 = Graphing Factored Polynomials ~Sketch the graph of
about the polynomial function P? the polynomial function. Make sure your graph shows all intercepts
(a) P has degree 3, two local maxima, and two local minima. and exhibits the proper end behavior.
(b) P has degree 3 and no local maxima or minima. 15. P(x) = (x — 1)(x + 2)
(¢c) P hgs degree 4, one local maximum, and no local 16. P(x) = (2 — x)(x + 5)
minima. >
ST, P(x) = —x(x — 3)(x + 2)
SKILLS 18. P(x) = x(x — 3)(x + 2)
5-8 m Transformations of Monomials ~Sketch the graph of each 19. P(x) = =(2x = 1)(x + 1)(x + 3)
function by transforming the graph of an appropriate function of 20. P(x) = (x = 3)(x + 2)(3x — 2)
::l;i lfogrrrzp)l)] .= x" from Figure 1. Indicate all x- and y-intercepts on 21 P(x) = (x + 2)(x + D)(x — 2)(x — 3)
a5 @ P(x) = e ® 0(x) = (x - 4)2 22. P(x) = x(x + 1)(x — 1)(2 — x)
© P(x)=2x*+3 @ P(x) = —(x + 2)° 23. P(x) = —2x(x — 2)’
6. (a) P(x) =x*—16 (b) P(x) = —(x +5)* 24. P(x) = sx(x = 5)°
(© P(x)=-=5*+5 @ Px)=(x—5) 25. P(x) = (x + 2)(x + 1)¥(2x — 3)
7. (@) P(x) =x’ —8 (b) O(x) = —x* + 27 26. P(x) = —(x + 1)Xx — 1)%x — 2)
© R(x)=—(x+2)" @ S(x) =3(x—1)"+4 27. P(x) = &5(x + 2)X(x — 3)?
8. (@) P(x)=(x+3)° (b) O(x) =2(x + 3)° — 64 28. P(x) = (x — 1)¥(x + 2)°
© R@x) = =3 =2 @ S() = =3 = 2716 & 59 poy -4 ) - 3)2
9-14 m End Behavior A polynomial function is given. 30. P(x) = (x — 3)%(x + 1)?
(a) Describe the end behavior of the polynomial function.
(b) Match the polynomial function with one of the graphs I-VI. 31-44 m Graphing Polynomials Factor the polynomial and use
9. P(x) = x(x> — 4) 10. O(x) = (x> — 4) X the factored form to find the zeros. Then sketch the graph.
SUL R() = —x° 58 —4r 120 S(x) = ba® — 24t 3L P(x) =% —x? - 6x 32. P(x) = x° + 2x* — &
13. T(x) = x* + 24 14, Ulx) = - + 22 33 P(x) = —x*+ 7+ 12x 34 P(x) = —2x° — x* +x
®35. P(x) =x* =3 + 22> 36. P(x) = x> — 9
1 y C3Px) =+ —x— 1
38. P(x) =x* +3x* —4x — 12
1 39. P(x) =2x* —x*— 18x + 9
0 e 40. P(x) = £(2x* + 3x° — 16x — 24)?
41. P(x) = x* —2x — 8x + 16
42. P(x) =x* —2x* + 8x — 16
43. P(x) =x*—3x*— 4 44. P(x) =x*—2x  + 1

&= 45-50 m End Behavior Determine the end behavior of P. Com-
pare the graphs of P and Q in large and small viewing rectangles,
as in Example 3(b).

.45, P(x) =3 — x>+ 5¢+ 1; Q(x) =3x°
46. P(X) = féx3 + ixZ + 12x; Q(x) - 7éx3
47. P(x) =x* = 7>+ 5x + 5, Qx) =x*
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48. P(x) = —x + 2x* + x; Q(x) = —x°
49. P(x) = x""—9x% Q(x) = x"
50. P(x) = 2x> — x'% Q(x) = —x"

#= 73-78 w Families of Polynomials  Graph the family of polyno-
mials in the same viewing rectangle, using the given values of c.
Explain how changing the value of ¢ affects the graph.

73. P(x) = ex’s c=1,2, 5,%

(e )4 - _
51-54 m Local Extrema The graph of a polynomial function is 7. Px) = (x =)t ¢=-10.1.2
given. From the graph, find (a) the x- and y-intercepts, and (b) the « 75, P(x) = X+ c=-1,0,1,2
coordinates of all local extrema. 76. P(x) = x* + cx; ¢ =2,0, -2, —4

- _2 —23_ 2
51. P(x) x* + 4x 52. P(x) = 5x X 77 Plx) = x* — ex; c=0,1,8,27

YA Y4 l 78. P(x) =x% ¢=1,3,57
/\ .
/ \ 0 / . SKILLS Plus
/ \ ! / x 79. Intersection Points of Two Polynomials

ANEA
7 \
/ \

(a) On the same coordinate axes, sketch graphs (as accu-
rately as possible) of the functions

=Y
\\\
/

y=x —-2x*—x+2 and y=—-x*+5x+2

53. P(x) = —3x° +3x — 1 54. P(x) = jx* — 3x° (b) On the basis of your sketch in part (a), at how many
points do the two graphs appear to intersect?
\ YA \ YA ’ (¢) Find the coordinates of all intersection points.
\ \ I 80. Power Functions Portions of the graphs of y = x%, y = x°,
\ \ 1 I y=x*y=x%and y = x° are plotted in the figures. Deter-
1 \ " mine which function belongs to each graph.
0 } 0 N\ 2 X
\ \\ / YA ® © YA
\
+ @ 1 +
@
®
o 0
#=| 55-62 w Local Extrema Graph the polynomial in the given 1 *
viewing rectangle. Find the coordinates of all local extrema. State
each answer rounded to two decimal places. State the domain and 0 1 e T
range.

55. y = —x2 + 8x, [—4. 12]by[—50, 30
y=—xt 8 | Jby | ] 81. 0dd and Even Functions Recall that a function f is odd if

56. y = x’ — 3x*, [~2,5]by[-10, 10] f(—=x) = —f(x) or even if f(—x) = f(x) for all real x.
57. y=x>—12x + 9, [—5,5]by[—30, 30] (a) Show that a polynomial P(x) that contains only odd

3 ) powers of x is an odd function.
58. y=2x" — 3x° — 12x — 32, [—5,5]by[—60, 30] . .
(b) Show that a polynomial P(x) that contains only even

59. y=x'+4x°, [-5,5]by[-30, 30] powers of x is an even function.

60. y = x* — 18x* + 32, [—5,5]by[—100, 100] (c) Show that if a polynomial P(x) contains both odd and
P ; even powers of x, then it is neither an odd nor an even

61. y=3x> —5x° + 3, [-3,3]by[—5, 10] function

62. y=x"— 52"+ 6, [~3,3]by[-5,10] (d) Express the function
Plx)=x>+6x°—x*—2x+5

#= 63-72 m Number of Local Extrema Graph the polynomial, and

. determine how many local maxima and minima it has. as the sum of an odd function and an even function.
63. y=—2x>+3x+5 64. y = x> + 12x . Number of Intercepts and Local Extrema
65, y=x -2 —x 66. y = 6x° + 3x + 1 (a) How many x-intercepts and how many local extrema

does the polynomial P(x) = x> — 4x have?
&

T67. y=x' =5 + 4 (b) How many x-intercepts and how many local extrema
68. v = 1.2x° + 3.75¢* — 7x3 — 15x% + 18x does the polynomial Q(x) = x* + 4x have?
(e S _ 2 o3 (¢) If a > 0, how many x-intercepts and how many local
69. y = (x =2 +32 70.y=("=2) extrema does each of the polynomials P(x) = x* — ax

71y =x" = 3x* +x 72y =3x — 17x* + 7 and Q(x) = x* + ax have? Explain your answer.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



268 CHAPTER3 = Polynomial and Rational Functions

83-86 m Local Extrema These exercises involve local maxima
and minima of polynomial functions.

83. (a) Graph the function P(x) = (x — 1)(x — 3)(x — 4) and
find all local extrema, correct to the nearest tenth.
(b) Graph the function
O(x) = (x = I)(x =3)(x —4) +5
and use your answers to part (a) to find all local extrema,
correct to the nearest tenth.

84. (a) Graph the function P(x) = (x — 2)(x — 4)(x — 5) and
determine how many local extrema it has.
(b) If a < b < ¢, explain why the function

P(x) = (x = a)(x = b)(x — ¢)

must have two local extrema.

85. Maximum Number of Local Extrema What is the smallest
possible degree that the polynomial whose graph is shown
can have? Explain.

/\

VAR VAR

86. Impossible Situation? Is it possible for a polynomial to have
two local maxima and no local minimum? Explain.

APPLICATIONS

7 87. Market Research A market analyst working for a small-
appliance manufacturer finds that if the firm produces and
sells x blenders annually, the total profit (in dollars) is

P(x) = 8x + 0.3x> — 0.0013x* — 372

Graph the function P in an appropriate viewing rectangle and

use the graph to answer the following questions.

(a) When just a few blenders are manufactured, the firm
loses money (profit is negative). (For example,
P(10) = —263.3, so the firm loses $263.30 if it pro-
duces and sells only 10 blenders.) How many blenders
must the firm produce to break even?

(b) Does profit increase indefinitely as more blenders are
produced and sold? If not, what is the largest possible
profit the firm could have?

. Population Change The rabbit population on a small island
is observed to be given by the function

P(t) = 120t — 0.4¢* + 1000
where ¢ is the time (in months) since observations of the

island began.

(a) When is the maximum population attained, and what is
that maximum population?

(b) When does the rabbit population disappear from the island?

PA

89. Volume of aBox An open box is to be constructed from a
piece of cardboard 20 cm by 40 cm by cutting squares of side
length x from each corner and folding up the sides, as shown
in the figure.

(a) Express the volume V of the box as a function of x.

(b) What is the domain of V? (Use the fact that length and
volume must be positive.)

(c) Draw a graph of the function V, and use it to estimate the
maximum volume for such a box.

%7400m4ﬁi
T

20 cm

4

90. Volume of aBox A cardboard box has a
square base, with each edge of the base
having length x inches, as shown in the
figure. The total length of all 12 edges of
the box is 144 in.

(a) Show that the volume of the box is
given by the function
V(x) = 2x*(18 — x).

(b) What is the domain of V? (Use the
fact that length and volume must be
positive.)

R

% (¢) Draw a graph of the function V and
use it to estimate the maximum vol-
ume for such a box.

DISCUSS DISCOVER PROVE

91. DISCOVER: Graphs of Large Powers Graph the functions
y=xty=x,y=x*andy=x’,for—1 =x=1,0n
the same coordinate axes. What do you think the graph of
y = x'% would look like on this same interval? What about

y = x!%'2 Make a table of values to confirm your answers.

92. DISCUSS = DISCOVER: Possible Number of Local Extrema
Is it possible for a third-degree polynomial to have exactly
one local extremum? Can a fourth-degree polynomial have
exactly two local extrema? How many local extrema can
polynomials of third, fourth, fifth, and sixth degree have?
(Think about the end behavior of such polynomials.) Now
give an example of a polynomial that has six local extrema.

WRITE
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