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IEPY W ONE-TO-ONE FUNCTIONS AND THEIR INVERSES

One-to-One Functions The Inverse of a Function Finding the Inverse of a Function
Graphing the Inverse of a Function Applications of Inverse Functions

The inverse of a function is a rule that acts on the output of the function and produces
the corresponding input. So the inverse “undoes” or reverses what the function has
done. Not all functions have inverses; those that do are called one-to-one.

One-to-One Functions

Let’s compare the functions f and g whose arrow diagrams are shown in Figure 1. Note
that f never takes on the same value twice (any two numbers in A have different im-
ages), whereas g does take on the same value twice (both 2 and 3 have the same image,
4). In symbols, g(2) = ¢g(3) but f(x,) # f(x,) whenever x; # x,. Functions that have
this latter property are called one-to-one.

Wy, 7
) &

—_— —_
f g
f is one-to-one ¢ is not one-to-one

FIGURE 1

DEFINITION OF A ONE-TO-ONE FUNCTION

A function with domain A is called a one-to-one function if no two elements
of A have the same image, that is,

VA f(x)) # f(x,) whenever x; # x,
/\y= fx)
g i\ An equivalent way of writing the condition for a one-to-one function is this:
/ Ffx) 1 flxa) If f(x) = f(x,), thenx; = x,.
i i _ If a horizontal line intersects the graph of f at more than one point, then we see from
0| «x X « Figure 2 that there are numbers x; # x, such that f(x;) = f(x,). This means that f is
not one-to-one. Therefore we have the following geometric method for determining
FIGURE 2 This function is not whether a function is one-to-one.

one-to-one because f(x;) = f(x,).

HORIZONTAL LINE TEST

A function is one-to-one if and only if no horizontal line intersects its graph
more than once.
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220 CHAPTER2 = Functions

Y4 / EXAMPLE 1 = Deciding Whether a Function Is One-to-One
/ Is the function f(x) = x* one-to-one?
1 SOLUTION 1 If x; # x,, then x} # x3 (two different numbers cannot have the same
/ cube). Therefore f(x) = x° is one-to-one.
0
; 1 1 * SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph of
f(x) = x* more than once. Therefore by the Horizontal Line Test, f is one-to-one.
/ 1 ®. Now Try Exercise 15 |
FIGURE 3 f(x) = x* is one-to-one. Notice that the function f of Example 1 is increasing and is also one-to-one. In fact, it

can be proved that every increasing function and every decreasing function is one-to-one.

v EXAMPLE 2 = Deciding Whether a Function Is One-to-One
\ T / Is the function g(x) = x? one-to-one?
\ : / SOLUTION 1 This function is not one-to-one because, for instance,
1+ g(1) =1 and g(=1)=1
—0—0—%‘4—0—0—; so 1 and —1 have the same image.

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the

— 23
FIGURE4 ¢(x) = x” is not graph of g more than once. Therefore by the Horizontal Line Test, g is not one-to-one.

one-to-one.
® . Now Try Exercise 17 |
YA Although the function g in Example 2 is not one-to-one, it is possible to restrict its
1 / domain so that the resulting function is one-to-one. In fact, if we define
+ / h(x) =x* x=0
T then 4 is one-to-one, as you can see from Figure 5 and the Horizontal Line Test.
1 +
T EXAMPLE 3 = Showing That a Function Is One-to-One
1 x

Show that the function f(x) = 3x + 4 is one-to-one.
FIGURE5 h(x) = x*(x =0) is
one-to-one. SOLUTION  Suppose there are numbers x; and x, such that f(x;) = f(x,). Then
3x; +4=3x,+4  Suppose f(x) = f(x,)
3x; = 3x, Subtract 4
X, = X Divide by 3

Therefore f is one-to-one.

®. Now Try Exercise 13 |

The Inverse of a Function

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

DEFINITION OF THE INVERSE OF A FUNCTION

Let f be a one-to-one function with domain A and range B. Then its inverse
function ' has domain B and range A and is defined by

i) =x & f(x) =y

for any y in B.

FIGURE 6
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@ Don’t mistake the —1 in f~! for
an exponent.

1
f~Y(x) does not mean ——
£(x)
The reciprocal 1/f(x) is written as

(f)™".
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This definition says that if f takes x to y, then f~' takes y back to x. (If f were not
one-to-one, then f~' would not be defined uniquely.) The arrow diagram in Figure 6
indicates that ™! reverses the effect of f. From the definition we have

domain of f~! = range of f

range of f~! = domain of f

EXAMPLE 4 = Finding f~" for Specific Values
If (1) = 5, f(3) = 7, and £(8) = —10, find £7'(5), £~'(7), and £~'(—10).
SOLUTION From the definition of f~! we have

f7'(5) =1 because f(1) =75
f7%(7) =3 because f(3) =7
f7'(—=10) =8 because f(8) = —10
Figure 7 shows how f ! reverses the effect of f in this case.
A B A B

) B

FIGURE 7

®. Now Try Exercise 25 |

EXAMPLE 5 = Finding Values of an Inverse Function
We can find specific values of an inverse function from a table or graph of the func-
tion itself.

(a) The table below gives values of a function /. From the table we see that
h~'(8) =3,k '(12) = 4,and h™'(3) = 6.

(b) A graph of a function f is shown in Figure 8. From the graph we see that
f7'(5) =7and £f7'(3) = 4.

YA

x h(x) 5
2 5 >
3<«—— 3§
4<—12 S
5 1
6« 3 77zl _

Finding values of /" FIGURE 8 Finding values of f~!

from a table of i from a graph of f

® . Now Try Exercises 29 and 31 |
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222 CHAPTER2 = Functions

In Example 7 note how £~ reverses
the effect of f. The function f is the
rule “Multiply by 3, then subtract 2,”
whereas f*l is the rule “Add 2, then
divide by 3.”

By definition the inverse function f ' undoes what f does: If we start with x, apply
f, and then apply f !, we arrive back at x, where we started. Similarly, f undoes what
f~! does. In general, any function that reverses the effect of f in this way must be the
inverse of f. These observations are expressed precisely as follows.

INVERSE FUNCTION PROPERTY

Let f be a one-to-one function with domain A and range B. The inverse function
f~! satisfies the following cancellation properties:

£ '(f(x)) = x forevery xin A
f(f '(x)) = x foreveryxinB

Conversely, any function f ! satisfying these equations is the inverse of f.

These properties indicate that f is the inverse function of ™', so we say that f and
f~! are inverses of each other.

EXAMPLE 6 = Verifying That Two Functions Are Inverses

Show that f(x) = x* and g(x) = x'? are inverses of each other.

SOLUTION Note that the domain and range of both f and g are R. We have
g(f(x) = g(x") = (=)' = x
fg(x) = fx'7) = (')’ =«

So by the Property of Inverse Functions, f and g are inverses of each other. These
equations simply say that the cube function and the cube root function, when com-
posed, cancel each other.

®. Now Try Exercise 39 |

Finding the Inverse of a Function

Now let’s examine how we compute inverse functions. We first observe from the
definition of ™! that

y=f(x) & [y =x

Soif y = f(x) and if we are able to solve this equation for x in terms of y, then we must
have x = f~'(y). If we then interchange x and y, we have y = f!(x), which is the
desired equation.

HOW TO FIND THE INVERSE OF A ONE-TO-ONE FUNCTION

1. Write y = f(x).
2. Solve this equation for x in terms of y (if possible).

3. Interchange x and y. The resulting equation is y = f~'(x).

Note that Steps 2 and 3 can be reversed. In other words, we can interchange x and y
first and then solve for y in terms of x.

EXAMPLE 7 = Finding the Inverse of a Function
Find the inverse of the function f(x) = 3x — 2.
SOLUTION  First we write y = f(x).

y=3x—2
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CHECK YOUR ANSWER

We use the Inverse Function Property:

P (fG) = £7'3x = 2)
(Bx—2)+2
3

3x
=—=y

507 = 1(252)

+
:3(x 2)_2
3

x+2-2=x V

In Example 8 note how f~! reverses
the effect of f. The function f is the
rule “Take the fifth power, subtract 3,
then divide by 2,” whereas ' is the
rule “Multiply by 2, add 3, then take
the fifth root.”

CHECK YOUR ANSWER

We use the Inverse Function Property:

e = (552

- {2<x5 2_ 3) - 3}1/5
=(x*-3+3)5

= ()" =x

F(2x +3)'F)

[(2x +3)P) -3
2
2% +3-3

FF' ()

Rational functions are studied in
Section 3.6.

SECTION 2.8 = One-to-One Functions and Their Inverses

Then we solve this equation for x:

3x=y+2 Add2
y+2
X =—"" Divide by 3
3
Finally, we interchange x and y:
_x+2
Y73
. ..o x+2
Therefore, the inverse function is f~'(x) = 3

. Now Try Exercise 49

EXAMPLE 8 = Finding the Inverse of a Function
x =3
2

SOLUTION We first write y = (x> — 3)/2 and solve for x.

Find the inverse of the function f(x) =

x =3 ) .
y = ) Equation defining function
2y=x—3 Multiply by 2
x> =2y +3 Add 3 (and switch sides)

x= 2y + 3)1/5 Take fifth root of each side

223

Then we interchange x and y to get y = (2x + 3)'/5. Therefore the inverse function is

Fx) = (2x + 3)'5

. Now Try Exercise 61

A rational function is a function defined by a rational expression. In the next ex-

ample we find the inverse of a rational function.

EXAMPLE 9 = Finding the Inverse of a Rational Function
2x +

Find the inverse of the function f(x) = - 13.
Y —

SOLUTION  We first write y = (2x + 3)/(x — 1) and solve for x.
_ 2x+3

x—1

Equation defining function

y

y(x—1)=2x+3 Multiply by x — 1

y—y=2x+3 Expand

y—2x=y+3 Bring x-terms to LHS

x(y—2)=y+3 Factor x
y+3
X = Divide by y — 2
y—2
x+3
Therefore the inverse function is f~'(x) = 5
.

® . Now Try Exercise 55
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224 CHAPTER2 = Functions

Graphing the Inverse of a Function

The principle of interchanging x and y to find the inverse function also gives us a method
for obtaining the graph of ' from the graph of f. If f(a) = b, then f~'(b) = a. Thus
the point (a, b) is on the graph of f if and only if the point (b, a) is on the graph of f~'.
But we get the point (b, a) from the point (a, b) by reflecting in the line y = x (see
Figure 9). Therefore, as Figure 10 illustrates, the following is true.

The graph of £~ ' is obtained by reflecting the graph of f in the line y = x.

(b, a)

=Y

FIGURE 9 FIGURE 10

EXAMPLE 10 = Graphing the Inverse of a Function
(a) Sketch the graph of f(x) = Vx — 2.

(b) Use the graph of f to sketch the graph of f~'.

(¢) Find an equation for f .

SOLUTION

(a) Using the transformations from Section 2.6, we sketch the graph of y = Vx — 2
by plotting the graph of the function y = Vx (Example 1(c) in Section 2.2) and
shifting it to the right 2 units.

(b) The graph of f~! is obtained from the graph of f in part (a) by reflecting it in the
line y = x, as shown in Figure 11.

(¢) Solve y = Vx — 2 for x, noting that y = 0.

FIGURE 11 Vx—2=y
x—2=y" Square each side

x=y"4+2 y=0 Add2

In Example 10 note how £~ reverses Interchange x and y, as follows:
the effect of f. The function f is the
rule “Subtract 2, then take the square
root,” whereas f ! is the rule “Square, Thus f_l(x) =x4+2 x=0
then add 2.”

y=x*+2 x=0

This expression shows that the graph of ™' is the right half of the parabola
y = x* + 2, and from the graph shown in Figure 11 this seems reasonable.

® . Now Try Exercise 73 |

Applications of Inverse Functions

When working with functions that model real-world situations, we name the variables
using letters that suggest the quantity being modeled. For instance we may use ¢
for time, d for distance, V for volume, and so on. When using inverse functions, we
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SECTION 2.8 = One-to-One Functions and Their Inverses 225

follow this convention. For example, suppose that the variable R is a function of the
variable N, say, R = f(N). Then f !(R) = N. So the function f~' defines N as a
function of R.

EXAMPLE 11 = An Inverse Function

At a local pizza parlor the daily special is $12 for a plain cheese pizza plus $2 for
each additional topping.

(a) Find a function f that models the price of a pizza with n toppings.

(b) Find the inverse of the function f. What does f~' represent?

(c) If a pizza costs $22, how many toppings does it have?

SOLUTION Note that the price p of a pizza is a function of the number n of
toppings.

(a) The price of a pizza with n toppings is given by the function

f(n) =12 + 2n

(b) To find the inverse function, we first write p = f(n), where we use the letter p
instead of our usual y because f(n) is the price of the pizza. We have

p=12+2n
Next we solve for n:
p=12+2n
p—12=2n
. _p— 12
2

- 12
L . The function f~' gives the number n of toppings for a

Son=f"(p) =
pizza with price p.

(¢) We have n = f(22) = (22 — 12)/2 = 5. So the pizza has five toppings.

®. Now Try Exercise 93 |
2.8 EXERCISES
CONCEPTS 4. A graph of a function f is given. Does f have an inverse? If
1. A function f is one-to-one if different inputs produce so, find f7'(1)= _____and f!(3) =

outputs. You can tell from the graph that a function

is one-to-one by using the Test.

2. (a) For a function to have an inverse, it must be
So which one of the following functions has an inverse? /

f) =2 gl =

(b) What is the inverse of the function that you chose in 1 !
part (a)? 5 y -
3. A function f has the following verbal description: “Multiply —

by 3, add 5, and then take the third power of the result.”

(a) Write a verbal description for f~'. ) ) )
(b) Find algebraic formulas that express £ and £~ in terms 5. If the point (3, 4)is on the graph of the function f, then the

of the input x. point (__, ) is on the graph of f'.
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226 CHAPTER2 = Functions
6. True or false?

(a) If f has an inverse, then f~!(x) is always the same
1
as ——.
f(x)
(b) If fhas an inverse, then f~'(f(x)) = x.

SKILLS

7-12 m One-to-One Function? A graph of a function f is given.
Determine whether f is one-to-one.

7. y / 8. y

N
/

11. YA 12.

\ . Th. £

13-24 m One-to-One Function? Determine whether the func-

tion is one-to-one.

S8 f(x) = —2x + 4 14. f(x) =3x—2
®U15. g(x) = Vi 16. g(x) = | x|
®7. h(x) = x* - 2 18. h(x) = x* + 8

19. f(x) =x*+5

20. f(x)=x"+5 0=x=2

2l r(t) =15=3, 0=t=>5

22. r(t) =t* -1

23 f(x) = - 24, f(x) =L

X X

25-28 = Finding Values of an Inverse Function Assume that f is
a one-to-one function.

®.25. (@) If f(2) = 7, find £71(7).
(b) If £7'(3) = —1, find f(—1).

26. (a) If £(5) = 18, find £7'(18).
(b) If £7'(4) = 2, find £(2).

27. If f(x) = 5 — 2x, find £7'(3).
28. If g(x) = x* + 4x with x = —2, find ¢”'(5).

29-30 = Finding Values of an Inverse from a Graph A graph of
a function is given. Use the graph to find the indicated values.

®.29. () £7(2) ®) £7'(5) (© £7'(6)

YA
f
0 4 X
30. (@) g7 '(2) (b) g7'(5) (©) g7'(6)

YA
4 g
0 4 X

31-36 m Finding Values of an Inverse Using a Table A table of
values for a one-to-one function is given. Find the indicated
values.

®.31. £71(5) 32. £71(0)
33, £7(f(1) 34. f(£7'(6))
35. £U(F7(1) 36. f7'(£7'(0)
x 1 2 3 4 5 6

£(x) 4 6 2 5 0 1

37-48 m Inverse Function Property Use the Inverse Function
Property to show that f and g are inverses of each other.

37. f(x) =x—6; gx)=x+6

3. f(x) = 3 g(x) =3
®.39. f(x) = 3x + 4 g(x)=x;4
40. f(x) =2 — 50 g(x) = 2;x
)= g =t 4 ) = () = VA
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SECTION 2.8 = One-to-One Functions and Their Inverses 227

46. f(x) = V4 - ¥, 0=x=2; one-to-one. Find the inverse of the function with the restricted
g(x) =" /4 — X 0=x=2 domain. (There is more than one correct answer.)
=4 — 52 = (x— 1)
42 2% 42 85. f(x) =4 —x 86. g(x) = (x— 1)
47. f(x):x72; g(x):x71
x—=5 5+ 4x
48. = ; =
=5 d W=7 5

49-70 m Finding Inverse Functions Find the inverse function
of f.

®.49. f(x) =3x+5 50. f(x) =7 — 5x
51, f(x) =5 — 4x° 52. f(x) =3x*+38
1 x—2
53. f(x)—x_i_2 54. f(x)—x_i_2
IS X 3 y
<55, f(x) = S+ 4 56. f(x) = T —2
2x + 5 4x — 2
57. = 58. =
f(x) x—7 f(x) 3x + 1
2x + 3 3 — 4x
59. f(x) = e 60. f(x) = P—
®61 f(x)=4-2x% x=0 62 f(x)=x+x, x=—} 10| X
1
63. f(x) =x% x=0 64. f(x)=—, x>0 .
X 89-90 m Graph of an Inverse Function Use the graph of f to
23 sketch the graph of £~ .
_ — (5 aY
65. f(x) = = 66. f(x) = (x’ = 6) 89. YA 9. ¥
67. f(x) = V5 + 8x 68. f(x) =2+ V3 +x
69. f(x) =2+ Vax 1 /
70. f(x) =V4 -2, 0=x=2 0 X /
)4
71-74 m Graph of an Inverse Function A function f is given. B
(a) Sketch the graph of f. (b) Use the graph of f to sketch the )
graph of £~'. (¢) Find f~'. 0} 1 X
71. f(x) =3x—6 72. f(x) =16 —x* x=0
B fx) = Va+ 1 74 f(x) =x*— 1 SKILLS Plus

#= 75-80 m One-to-One Functions from a Graph Draw the graph = 91-92 m Functions That Are Their Own Inverse If a function f
of f, and use it to determine whether the function is one-to-one. is its own inverse, then the graph of f is symmetric about the line
y = x. (a) Graph the given function. (b) Does the graph indicate

— 3 _ — 3
75 flx) = a7 —x 76. flx) = 27+ x that f and f! are the same function? (c) Find the function f~'.
+ 12 Use your result to verify your answer to part (b).
71 f(x) == 78. f(x) = Vo' — dx + 1 y yy part (b)
ro6 91. f(x) = — 92. f(x) = 12
79. f(x) = |x| — |x— 6]  80. f(x) = x-|x| A" T
% 81-84 m Finding Inverse Functions A one-to-one function is
given. (a) Find the inverse of the function. (b) Graph both the APPLICATIONS
function and its ipverse on the same screen.to verify that the % _93. Pizza Cost Marcello’s Pizza charges a base price of $16 for
graphs are reflections of each other in the line y = x. a large pizza plus $1.50 for each additional topping.
81. f(x)=2+x 82. f(x)=2—1x (a) Find a function f that models the price of a pizza with
83. g(x) = Vx + 3 84. gx) =2+ 1, x=0 71 tOppINgs.
(b) Find the inverse of the function f. What does f
85-88 m Restricting the Domain  The given function is not represent?
one-to-one. Restrict its domain so that the resulting function is (¢) If a pizza costs $25, how many toppings does it have?
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228 CHAPTER2

94.

95.

96.

97.

98.

99.

Functions

Fee for Service  For his services, a private investigator

requires a $500 retainer fee plus $80 per hour. Let x represent

the number of hours the investigator spends working on a

case.

(a) Find a function f that models the investigator’s fee as a
function of x.

(b) Find f~'. What does f~' represent?

(¢) Find £7'(1220). What does your answer represent?

Torricelli's Law A tank holds 100 gallons of water, which

drains from a leak at the bottom, causing the tank to empty in

40 minutes. According to Torricelli’s Law, the volume V of

water remaining in the tank after # min is given by the
function

V=f1) = 100(1 - %)2

(a) Find f~'. What does f~' represent?
(b) Find £7'(15). What does your answer represent?
Blood Flow As blood moves through a vein or artery, its
velocity v is greatest along the central axis and decreases as
the distance r from the central axis increases (see the figure
below). For an artery with radius 0.5 cm, v (in cm/s) is given
as a function of r (in cm) by

v =g(r) = 18,500(0.25 — r?)

(a) Find g~'. What does ¢! represent?
(b) Find g~'(30). What does your answer represent?

v . — Y
S I LA = =

/ —]——

/ —

Demand Function The amount of a commodity that
is sold is called the demand for the commodity. The
demand D for a certain commodity is a function of the
price given by

D = f(p) = —3p + 150
(a) Find f~'. What does f~! represent?
(b) Find £7'(30). What does your answer represent?
Temperature Scales The relationship between the Fahren-
heit (F) and Celsius (C) scales is given by

F=g(C)=3C+32

(a) Find g~'. What does ¢! represent?
(b) Find g~'(86). What does your answer represent?
Exchange Rates The relative value of currencies fluctuates

every day. When this problem was written, one Canadian dol-
lar was worth 0.9766 U.S. dollars.

(a) Find a function f that gives the U.S. dollar value f(x) of
x Canadian dollars.

(b) Find f~'. What does f~! represent?

(¢) How much Canadian money would $12,250 in U.S. cur-
rency be worth?

100.

101.

DISCUSS
102.

103.

104.

IncomeTax In a certain country the tax on incomes less
than or equal to €20,000 is 10%. For incomes that are more
than €20,000 the tax is €2000 plus 20% of the amount over
€20,000.

(a) Find a function f that gives the income tax on an
income x. Express f as a piecewise defined function.
(b) Find f~'. What does f~' represent?

(¢) How much income would require paying a tax of
€10,000?

Multiple Discounts A car dealership advertises a 15% dis-
count on all its new cars. In addition, the manufacturer
offers a $1000 rebate on the purchase of a new car. Let x
represent the sticker price of the car.

(a) Suppose that only the 15% discount applies. Find a
function f that models the purchase price of the car as a
function of the sticker price x.

(b) Suppose that only the $1000 rebate applies. Find a
function ¢ that models the purchase price of the car as a
function of the sticker price x.

(¢) Find a formula for H = fog.
(d) Find H~'. What does H™! represent?
(e) Find H'(13,000). What does your answer represent?

DISCOVER PROVE WRITE

DISCUSS: Determining When a Linear Function Has an
Inverse For the linear function f(x) = mx + b to be
one-to-one, what must be true about its slope? If it is one-
to-one, find its inverse. Is the inverse linear? If so, what is
its slope?

DISCUSS: Finding an Inverse “in Your Head” In the margin
notes in this section we pointed out that the inverse of a
function can be found by simply reversing the operations
that make up the function. For instance, in Example 7 we
saw that the inverse of

fx) =3x—2 is

because the “reverse” of “Multiply by 3 and subtract 2 is
“Add 2 and divide by 3.” Use the same procedure to find the
inverse of the following functions.

2. 1 1
@ 1) = =5 b) f(x) =3

(© f(x)= Vi +2 @ f(x)=(2x— 5)3
Now consider another function:

fx)y=x*+2x+6

Is it possible to use the same sort of simple reversal of oper-
ations to find the inverse of this function? If so, do it. If not,
explain what is different about this function that makes this

task difficult.

PROVE: The Identity Function The function I(x) = x is
called the identity function. Show that for any function f
wehave fol=fIof=f,and fof '=flof=1
(This means that the identity function / behaves for func-
tions and composition just the way the number 1 behaves
for real numbers and multiplication.)
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