SECTION 7.3

74. Find LA + 4B + £C in the figure.
Addition Formula to find tan(A + B).]

[Hint: First use an

APPLICATIONS

#= 75. Adding an Echo A digital delay device echoes an input sig-
nal by repeating it a fixed length of time after it is received. If
such a device receives the pure note f,(r) = 5 sin r and
echoes the pure note f,(¢) = 5 cos 7, then the combined
sound is f(1) = fi(r) + fo(¢).

(a) Graph y = f(7), and observe that the graph has the form
of a sine curve y = ksin(z + ¢).

(b) Find k and ¢.

76. Interference Two identical tuning forks are struck, one a
fraction of a second after the other. The sounds produced are
modeled by f,(z) = C sin wr and f,(1) = Csin(wt + a).
The two sound waves interfere to produce a single sound
modeled by the sum of these functions

f(t) = Csinwr + Csin(wt + «)

(a) Use the Addition Formula for Sine to show that f can be
written in the form f(z) = A sin wt + B cos wt, where A
and B are constants that depend on a.

(b) Suppose that C = 10 and @ = /3. Find constants k and
¢ so that f(z) = ksin(wt + ¢).

WA
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DISCUSS DISCOVER PROVE WRITE

77. PROVE: Addition Formula for Sine In the text we proved
only the Addition and Subtraction Formulas for Cosine. Use
these formulas and the cofunction identities

. T
sinx = cos| — — x
2
(T
cosx =sin| — — x
2

to prove the Addition Formula for Sine. [Hint: To get
started, use the first cofunction identity to write

sin(s + 1) = cos(g — (s + t))

NEE

and use the Subtraction Formula for Cosine.]

78. PROVE: Addition Formula for Tangent Use the Addition
Formulas for Cosine and Sine to prove the Addition Formula

for Tangent. [Hint: Use
sin(s + 1)
tan(s + 1) = ——
cos(s + 1)

and divide the numerator and denominator by cos s cos t.]

DOUBLE-ANGLE, HALF-ANGLE, AND PRODUCT-SUM FORMULAS

Double-Angle Formulas
Inverse Trigonometric Functions

Half-Angle Formulas

Evaluating Expressions Involving

Product-Sum Formulas

The identities we consider in this section are consequences of the addition formulas.
The Double-Angle Formulas allow us to find the values of the trigonometric functions
at 2x from their values at x. The Half-Angle Formulas relate the values of the trigono-
metric functions at 3x to their values at x. The Product-Sum Formulas relate products
of sines and cosines to sums of sines and cosines.

Double-Angle Formulas

The formulas in the box on the next page are immediate consequences of the addition
formulas, which we proved in Section 7.2.
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554 CHAPTER7 = Analytic Trigonometry

DOUBLE-ANGLE FORMULAS
Formula for sine: sin 2x = 2 sin x cos x
Formulas for cosine: cos 2x = cos’x — sin’x

=1 — 2sin’x

=2 cos’x — 1

2 tan x
Formula for tangent: tan 2x = —————
1 — tan“x

The proofs for the formulas for cosine are given here. You are asked to prove the
remaining formulas in Exercises 35 and 36.

Proof of Double-Angle Formulas for Cosine
cos 2x = cos(x + x)
= COs X CcOSXx — Sin x sin x
= cos’x — sin’x

The second and third formulas for cos 2x are obtained from the formula we just
proved and the Pythagorean identity. Substituting cos’x = 1 — sin’x gives

cos 2x = cos’x — sin’x

(1 — sin’x) — sin’x
=1 — 2sin’x

The third formula is obtained in the same way, by substituting sin’x = 1 — cos’x. M

EXAMPLE 1 = Using the Double-Angle Formulas
If cosx = —% and x is in Quadrant II, find cos 2x and sin 2x.
SOLUTION Using one of the Double-Angle Formulas for Cosine, we get

cos 2x = 2 cos’x — 1

2\? 8 1
=2(-Z) —l=-—-1=—-—
3 9 9

To use the formula sin 2x = 2 sin x cos x, we need to find sin x first. We have
V5
sinx = V1 — cos?x = \/1 — (=2) = B

where we have used the positive square root because sinx is positive in Quadrant II.

Thus
sin 2x = 2 sin x cos x
(Y)(2) -
3 3 9
® . Now Try Exercise 3 |
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SECTION 7.3 = Double-Angle, Half-Angle, and Product-Sum Formulas 555

EXAMPLE 2 = ATriple-Angle Formula

Write cos 3x in terms of cos x.

SOLUTION

cos 3x = cos(2x + x)

= c0s 2x cos x — sin 2x sin x

(2 cos’x — 1) cos x — (2 sin x cos x) sin x
=2 cos’x — cosx — 2 sin’x cos x

=2cos’x — cosx — 2cosx (1 — cos’x)
=2cos’x — cosx — 2cos x + 2 cos’x

=4 cos’x — 3 cosx

. Now Try Exercise 109

Addition formula
Double-Angle Formulas
Expand
Pythagorean identity
Expand
Simplify

|

Example 2 shows that cos 3x can be written as a polynomial of degree 3 in cos x. The
identity cos 2x = 2 cos>x — 1 shows that cos 2x is a polynomial of degree 2 in cos x. In
fact, for any natural number n we can write cos nx as a polynomial in cos x of degree n (see
the note following Exercise 109). The analogous result for sin 7x is not true in general.

EXAMPLE 3 = Proving an Identity

. . sin 3x
Prove the identity —— = 4 cos x — sec x.
sin x cos x

SOLUTION We start with the left-hand side.

sin 3x sin(x + 2x)

sin x cos x sin x cos x

sin x cos 2x + cos x sin 2x

sin x cos x

sin x (2 cos’x — 1) + cos x (2 sin x cos x)

sin x cos x

sin x (2 cos’x — 1) N cos x (2 sin x cos x)

sin x cos x sin x cos x
2 cos’x — 1
=————+2cosx
CoS X

1
=2cosx —— + 2cosx
CoS X

=4cosx — secx

. Now Try Exercise 87

Half-Angle Formulas

Addition Formula

Double-Angle Formulas

Separate fraction

Cancel

Separate fraction

Reciprocal identity

The following formulas allow us to write any trigonometric expression involving even pow-
ers of sine and cosine in terms of the first power of cosine only. This technique is important
in calculus. The Half-Angle Formulas are immediate consequences of these formulas.
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556 CHAPTER7 = Analytic Trigonometry

FORMULAS FOR LOWERING POWERS

) 1 — cos 2x 2 1 + cos 2x
sin“x = —————— cos™x = —————
2 2
2 1 — cos 2x
tan“x = —————
1 + cos 2x

Proof The first formula is obtained by solving for sin’x in the Double-Angle
Formula cos 2x = 1 — 2 sin’x. Similarly, the second formula is obtained by solving
for cos®x in the Double-Angle Formula cos 2x = 2 cos*x — 1.

The last formula follows from the first two and the reciprocal identities:

1 — cos 2x
any = sin’x 2 _ 1 —cos2x
cos’x 1 +cos2x 1+ cos2x
2 [ |

EXAMPLE 4 =~ Lowering Powers in a Trigonometric Expression
Express sin’x cos’x in terms of the first power of cosine.

SOLUTION We use the formulas for lowering powers repeatedly.

5 ) <1—0052x><1+0052x>
sin“x cos™x =
2 2

1 —cos®2x 1

= [ 29
1 4 g o8
_1_1(1 +cos4x)_l_1_cos4x
4 4 2 408 8
1

o]

1
=—— —cos4x = —(1 — cos 4x)
8 8

Another way to obtain this identity is to use the Double-Angle Formula for Sine in
the form sin x cos x = } sin 2x. Thus

1 1/ 1 — cos4x
202 2y = —sin?2x = — B
sin“x cos”x 7 sin” 2x 4( 2 )
(1 — cos 4)
= —(1 — cos 4x
8
®. Now Try Exercise 11 |

HALF-ANGLE FORMULAS

sinz=+ [1 — cosu cosﬁ=+ [1 4 cosu
2 2 2 2

u 1 —cosu sin u
tan — = : =
2 sin u 1+ cosu

The choice of the + or — sign depends on the quadrant in which u/2 lies.
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SECTION 7.3 = Double-Angle, Half-Angle, and Product-Sum Formulas 557

Proof We substitute x = u/2 in the formulas for lowering powers and take the square
root of each side. This gives the first two Half-Angle Formulas. In the case of the
Half-Angle Formula for Tangent we get

u 1 —cosu
tan — = X/ ——
2 1 + cosu

_ I —cosu 1 — cosu Multiply numerator and
T 1 + cos u 1 — cosu denominator by 1 — cos u

(1 — cosu)?

=X\ Simplif

1 — cos’u o
:i|1—cosu| VA = |A|

| sin u | and 1 — cos’u = sin’u

Now, 1 — cos u is nonnegative for all values of u. It is also true that sinu and
tan(u/2) always have the same sign. (Verify this.) It follows that

u 1 —cosu
tan - = ——
2 sin u

The other Half-Angle Formula for Tangent is derived from this by multiplying the
numerator and denominator by 1 + cos u. |

EXAMPLE 5 = Using a Half-Angle Formula

Find the exact value of sin 22.5°.

SOLUTION  Since 22.5° is half of 45°, we use the Half-Angle Formula for Sine with
u = 45°. We choose the + sign because 22.5° is in the first quadrant.

. 45° 1 — cos 45° ‘
sin 7 =N\ Half-Angle Formula

cos 45° = V2/2

2

1 -V2/2

2

2-V2

\/T Common denominator
=N2-\2 Simplify

® . Now Try Exercise 17 |

[S)]

EXAMPLE 6 ~ Using a Half-Angle Formula
Find tan(u/2) if sin u = % and u is in Quadrant II.

SOLUTION To use the Half-Angle Formula for Tangent, we first need to find cos u.
Since cosine is negative in Quadrant II, we have

cosu = —V1 — sin’u
V-2

u 1 —cosu
Thus tan - = ———

2 sin u
1+ V215 5+ V21
= 5 = 5
5
®. Now Try Exercise 37 |
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558 CHAPTER7 = Analytic Trigonometry

Evaluating Expressions Involving Inverse
Trigonometric Functions

Expressions involving trigonometric functions and their inverses arise in calculus. In
the next examples we illustrate how to evaluate such expressions.

EXAMPLE 7 = Simplifying an Expression Involving an Inverse
Trigonometric Function

Write sin(2 cos™'x) as an algebraic expression in x only, where —1 = x =< 1.

SOLUTION Let § = cos™'x, and sketch a triangle as in Figure 1. We need to find

1 sin 26, but from the triangle we can find trigonometric functions of 6 only, not 26. So
1—-x? we use the Double-Angle Formula for Sine.
9 sin(2 cos”'x) = sin 26 cos 'x=10
X = 2 sin 6 cos 6 Double-Angle Formula
FIGURE =2V1—x* From the triangle
. Now Try Exercises 43 and 47 |

EXAMPLE 8 = Evaluating an Expression Involving Trigonometric

Functions
Evaluate sin 260, where cos 6 = —% with 6 in Quadrant II.
P(x,y) SOLUTION We first sketch the angle 6 in standard position with terminal side in Quad-
rant II as in Figure 2. Since cos § = x/r = — %, we can label a side and the hypotenuse
s of the triangle in Figure 2. To find the remaining side, we use the Pythagorean Theorem.
X2+ y2 =72 Pythagorean Theorem
0 2 2 2
\ (=2)*+y*=5 x=-2, r=5
-2 5
y=*V21 Solve for y~
y=+V21 Because y > 0
FIGURE 2 We can now use the Double-Angle Formula for Sine.
sin 260 = 2 sin 0 cos 6 Double-Angle Formula
(5)(-5) |
=2 — || —— From the triangle
5 5
4Vv21 S——
e — D1m
25 mplity
®. Now Try Exercise 51 |

DISCOVERY PROJECT
Where to Sit at the Movies

To best view a painting or a movie requires that the viewing angle be as large as
possible. If the painting or movie screen is at a height above eye level, then being
too far away or too close results in a small viewing angle and hence a poor view-
ing experience. So what is the best distance from which to view a movie or a
painting? In this project we use trigonometry to find the best location from which
to view a painting or a movie. You can find the project at www.stewartmath.com.

© iStockphoto.com/agencyby
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SECTION 7.3 = Double-Angle, Half-Angle, and Product-Sum Formulas 559

Product-Sum Formulas

It is possible to write the product sin u cos v as a sum of trigonometric functions. To see
this, consider the Addition and Subtraction Formulas for Sine:

sin(u + v) = sinu cos v + cos u sin v
sin(u — v) = sinu cos v — cos u sin v
Adding the left- and right-hand sides of these formulas gives
sin(u + v) + sin(u — v) = 2 sinu cos v
Dividing by 2 gives the formula
sin u cos v = [sin(u + v) + sin(u — v)]

The other three Product-to-Sum Formulas follow from the Addition Formulas in a
similar way.

PRODUCT-TO-SUM FORMULAS
sin u cos v = 3[sin(u + v) + sin(u — v)]
cos u sin v = [ sin(u + v) — sin(u — v)]
cos u cos v = 3[cos(u + v) + cos(u — v)]
sin u sin v = 3[cos(u — v) — cos(u + v)]

EXAMPLE 9 = Expressing a Trigonometric Product as a Sum
Express sin 3x sin 5x as a sum of trigonometric functions.

SOLUTION Using the fourth Product-to-Sum Formula with # = 3x and v = 5x and
the fact that cosine is an even function, we get

sin 3x sin 5x = 3[cos(3x — 5x) — cos(3x + 5x)]
=1cos(—2x) — 5 cos 8x
=2 cos 2x — 5 cos 8x

®. Now Try Exercise 55 |

The Product-to-Sum Formulas can also be used as Sum-to-Product Formulas. This
is possible because the right-hand side of each Product-to-Sum Formula is a sum and
the left side is a product. For example, if we let

x+y x—Yy

d =
B an 1 )

u =

in the first Product-to-Sum Formula, we get

x + X —
5 Y cos 5 Y = $(sinx + sin y)

sin

x+y xX—y
CcoSs
2 2

SO sinx + siny = 2 sin

The remaining three of the following Sum-to-Product Formulas are obtained in a
similar manner.
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560 CHAPTER7 = Analytic Trigonometry

SUM-TO-PRODUCT FORMULAS

sinx + siny = 2 sin cos )
. . X L XYy
sinx — siny = 2 cos sin 2
x+ty X —y
cosx + cosy = 2 cos cos
2 2
. xty x—y
cosx — cosy = —2sin 2 sin 2

EXAMPLE 10 = Expressing a Trigonometric Sum as a Product
Write sin 7x + sin 3x as a product.
SOLUTION  The first Sum-to-Product Formula gives

. . o Ix + 3x Tx — 3x
sin 7x + sin 3x = 2 sin 5 cos >

= 2 sin 5x cos 2x

®. Now Try Exercise 61 |

EXAMPLE 11 = Proving an Identity

. . . sin3x — sinx
Verify the identity ———— = tan x.
cos 3x + cos x

SOLUTION We apply the second Sum-to-Product Formula to the numerator and the
third formula to the denominator.

3x+x . 3x—x
2 cos sin

sin 3x — sin x 2 2
LHS = = Sum-to-Product Formulas
cos 3x + cos x 3x + x 3x — x
2 cos cos
2 2
2 cos 2x sin x o
= Simplify
2 cos 2x cos x
sin x
= = tan x = RHS Cancel
cos X
® . Now Try Exercise 93 [ |
7.3 EXERCISES
CONCEPTS 2. If we know the value of cos x and the quadrant in which x/2
1. If we know the values of sin x and cos x, we can find the lies, we can find the value of sin(x/2) by using the
value of sin 2x by usingthe ___ Formula for Sine. Formula for Sine. State the formula:

sin(x/2) =

State the formula: sin 2x =
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SKILLS

3-10 = Double Angle Formulas
from the given information.

S

Find sin 2x, cos 2x, and tan 2x

N . .
“ < 3. sinx = 73, xin Quadrant I

4. tanx = —%, xin Quadrant II

4
.cosx =3, cscx <O

6. cscx=4, tanx <O

. secx = 2, xin Quadrant IV

5
7. sinx = f%, x in Quadrant III
8
9

1
. tanx = —3, cosx >0

10. cotx = %, sinx >0

11-16 m Lowering Powers in a Trigonometric Expression Use
the formulas for lowering powers to rewrite the expression in
terms of the first power of cosine, as in Example 4.

> .
11 sintx
13. cos’x sinx

15. cos*x sin*x

17-28 m Half Angle Formulas

12. cos*x
14. cos*x sin’x

16. cos®x

Use an appropriate Half-Angle

Formula to find the exact value of the expression.

®.17. sin 15°
19. tan 22.5°
21. cos 165°

T
23. tan —
an8

T
25. -
cos 2

97
27. sin —
sin 3

18. tan 15°
20. sin 75°
22. cos 112.5°

24. cos —

26. tan —

28. sin——

29-34 = Double- and Half-Angle Formulas Simplify the
expression by using a Double-Angle Formula or a Half-Angle

Formula.
29. (a) 2 sin 18° cos 18°
2 tan 7°
1 — tan®7°
31. (a) cos?34° — sin®34°
,0

0
32. (a) cos’— — sin®>—
2 2

30. (a)

sin 8°
1 + cos &°

1 — cos 30°
34. (a) 1/%

33. (a)

35. Proving a Double-Angle Formula Use the Addition Formula

(b) 2 sin 36 cos 36
2 tan 76

1 — tan> 70

(b) cos?56 — sin®50

(b)

0 0
(b) 2sin —cos —
2 2

1 — cos 460
b -
(b) sin 46

1 — cos 86
(b) \/f

for Sine to prove the Double-Angle Formula for Sine.

36. Proving a Double-Angle Formula Use the Addition For-
mula for Tangent to prove the Double-Angle Formula for

Tangent.

SECTION 7.3

® .43, sin(2 tan"'x)

.47 sin(2 cos ™' %)

Double-Angle, Half-Angle, and Product-Sum Formulas 561

37-42 m Using a Half-Angle Formula Find sin % cos % and

X . . .
tan B from the given information.

® 37 sinx =2 0°<x<90°

38. cosx = —%, 180° <x <270°

39. cscx =3, 90° <x < 180°

40. tanx =1, 0°<x<90°

41. secx =3, 270° < x < 360°

42. cotx =5, 180° <x <270°

43-46 m Expressions Involving Inverse Trigonometric Func-
tions Write the given expression as an algebraic expression in x.
44. tan(2 cos 'x)

45. sin(3 cos'x) 46. cos(2sin"'x)

47-50 m Expressions Involving Inverse Trigonometric Functions
Find the exact value of the given expression.
48. cos(2 tan ' F)

49. sec(2sin"'}) 50. tan(5 cos™'3

51-54 m Evaluating an Expression Involving Trigonometric
Functions Evaluate each expression under the given conditions.

® .51, cos26; sin@ = —2, 6 in Quadrant III

52. sin(6/2); tanf = —3, 6 in Quadrant IV
53. sin260; sinf = %, 0 in Quadrant II
54. tan20; cos@ =2, 6 in Quadrant I

55-60 m Product-to-Sum Formulas Write the product as a sum.

.55, sin 2x cos 3x 56. sin x sin 5x
57. cos x sin 4x 58. cos 5x cos 3x
X X
59. 3 cos 4x cos 7x 60. 11 sin 5 cos Z

61-66 m Sum-to-Product Formulas Write the sum as a product.

® .61, sin 5x + sin 3x 62. sin x — sin 4x

63. cos 4x — cos 6x 64. cos 9x + cos 2x

65. sin 2x — sin 7x 66. sin 3x + sin 4x

67-72 m Value of a Product or Sum  Find the value of the prod-
uct or sum.

67. 2 sin 52.5° sin 97.5° 68. 3 cos 37.5° cos 7.5°
69. cos 37.5°sin 7.5° 70. sin 75°+ sin 15°
71. cos 255° — cos 195° 72. cos - + cos

. Ccos cos - cos o+ cos o

73-92 m Proving Identities Prove the identity.
73. cos?5x — sin®5x = cos 10x
74. sin 8x = 2 sin 4x cos 4x

75. (sinx + cosx)* = 1 + sin 2x
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562 CHAPTER7 = Analytic Trigonometry

76. cos*x — sin*x = cos 2x

2 tan x .
77. — 0, =sin 2x
1 + tan“x
1 - 2
78. w = tan x
sin 2x

79. tan(%) + cosxtan(%) = sin x

2 —
80. tan <%) + cscx = ST Cosx

sin x
sin 4x
81. — = 4 cos x cos 2x
sin x
1 + sin 2x
82. — =1+ Jsecxcscx
sin 2x

2(tan x — cot x) )
83 — " =sin2x
tan°x — cot’x

in2
84. tanx=smix
1 + cos 2x
1 — tan?
85. cot2x = —
2 tan x

86. 4(sin®x + cos®x) = 4 — 3 sin? 2x

3tanx — tan’x

4

- 87. tan 3x = 3
1 — 3tanx
sin 3x + cos 3x .
88, ————————— =1+ 4sinxcosx
cos x — sin x
sin x + sin 5x
89, —————————— =tan3x
cos x + cos 5x
sin 3x + sin 7x
90. —————— = cot 2x
cos 3x — cos 7x
01 sin 10x _COos 5x
" sin9x + sinx  cos 4x
sin x + sin 3x + sin 5x
92. = tan 3x
cos x + cos 3x + cos S5x
L 3

sin x + sin x +
- 93, Y tan( y)

cos x + cosy 2

sin(x + y) — sin(x — y)

94. t =
any cos(x + y) + cos(x — y)

95. tan2<f + 3) _ 1tz
2 4 1 —sinx
96. (1 — cos 4x)(2 + tan’x + cot’x) = 8

97-100 ®m Sum-to-Product Formulas Use a Sum-to-Product
Formula to show the following.

97. sin 130° — sin 110° = —sin 10°

98. cos 100° — cos 200° = sin 50°

99. sin 45° + sin 15° = sin 75°
100. cos 87° + cos 33° = sin 63°

SKILLS Plus
101. Proving an Identity Prove the identity

sin x + sin 2x + sin 3x + sin 4x + sin 5x

= tan 3x
cos x + cos 2x + cos 3x + cos 4x + cos Sx

102. Proving an Identity Use the identity
sin 2x = 2 sin x cos x
n times to show that
sin(2"x) = 2" sin x cos x cos 2x cos 4x - - - cos 2" 'x
103-104 = [dentities Involving Inverse Trigonometric Functions
Prove the identity.

103. 2sin"'x = cos™!(1 — 2x?), 0=x=1 [Hint: Let
u = sin"'x, so that x = sin u. Use a Double-Angle
Formula to show that 1 — 2x*> = cos 2u.]

1 |
104. 2tan"1<7> = cos"'<x2 )
X x”+ 1

1 1
[Hint: Let u = tan™! (*), so that x =
X tan u

= cotu.

Use a Double-Angle Formula to show that
x* =1  cotu—1

= = cos 2u.]
X +1 csclu

% 105-107 = Discovering an Identity Graphically In these

problems we discover an identity graphically and then prove
the identity.
sin3x  cos 3x

105. (a) Graph f(x) = Snx  cosx

, and make a conjecture.

(b) Prove the conjecture you made in part (a).

106. (a) Graph f(x) = cos 2x + 2 sin’x, and make a conjecture.

(b) Prove the conjecture you made in part (a).

107. Let f(x) = sin 6x + sin 7x.
(a) Graph y = f(x).
(b) Verify that f(x) = 2 cos 3x sin $x.
(¢c) Graph y = 2cosixand y = —2 cos 3x, together with
the graph in part (a), in the same viewing rectangle.
How are these graphs related to the graph of f?

108. A Cubic Equation Let 3x = /3, and let y = cos x. Use the
result of Example 2 to show that y satisfies the equation
8y —6y—1=0

[Note: This equation has roots of a certain kind that are
used to show that the angle 77/3 cannot be trisected by using
a ruler and compass only.]

®.109. Tchebycheff Polynomials

(a) Show that there is a polynomial P(z) of degree 4 such
that cos 4x = P(cos x) (see Example 2).

(b) Show that there is a polynomial Q(7) of degree 5 such
that cos 5x = Q(cos x).

[Note: In general, there is a polynomial P,(t) of degree n
such that cos nx = P,(cos x). These polynomials are called
Tchebycheff polynomials, after the Russian mathematician
P. L. Tchebycheff (1821-1894).]
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110. Length of a Bisector 1In triangle ABC (see the figure) the
line segment s bisects angle C. Show that the length of s is
given by

2ab cos x
a+b

[Hint: Use the Law of Sines.]

A

111. Angles of a Triangle If A, B, and C are the angles in a tri-
angle, show that

sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
112. Largest Area A rectangle is to be inscribed in a semicircle
of radius 5 cm as shown in the following figure.
(a) Show that the area of the rectangle is modeled by the
function

A(6) = 25 sin 26

(b) Find the largest possible area for such an inscribed
rectangle. [Hint: Use the fact that sin u achieves its
maximum value at u = 77'/2.]

(¢) Find the dimensions of the inscribed rectangle with the
largest possible area.

0
FS cm*ﬁ

APPLICATIONS

113. Sawing a Wooden Beam A rectangular beam is to be cut
from a cylindrical log of diameter 20 in.

(a) Show that the cross-sectional area of the beam is
modeled by the function
A(6) = 200 sin 260

where 6 is as shown in the figure.

(b) Show that the maximum cross-sectional area of such a
beam is 200 in>

its maximum value at u = 7/2.]

[Hint: Use the fact that sinu achieves

SECTION 7.3

Double-Angle, Half-Angle, and Product-Sum Formulas 563

114. Length of a Fold The lower right-hand corner of a long

115.

116.

piece of paper 6 in. wide is folded over to the left-hand
edge as shown. The length L of the fold depends on the
angle 0. Show that

3
sin 6 cos’6

Sound Beats When two pure notes that are close in fre-
quency are played together, their sounds interfere to pro-
duce beats; that is, the loudness (or amplitude) of the sound
alternately increases and decreases. If the two notes are
given by

fi(t) =cos 11t and  f,(1) = cos 13¢

the resulting sound is f(z) = f,(¢) + f(¢).

(a) Graph the function y = f(1).

(b) Verify that f(r) = 2 cos t cos 121.

(¢) Graphy =2costandy = —2 cos t, together with the
graph in part (a), in the same viewing rectangle. How
do these graphs describe the variation in the loudness
of the sound?

Touch-Tone Telephones When a key is pressed on a touch-

tone telephone, the keypad generates two pure tones, which

combine to produce a sound that uniquely identifies the key.

The figure shows the low frequency f; and the high fre-

quency f, associated with each key. Pressing a key produces

the sound wave y = sin(27ft) + sin(27fyr).

(a) Find the function that models the sound produced when
the 4 key is pressed.

(b) Use a Sum-to-Product Formula to express the sound
generated by the 4 key as a product of a sine and a
cosine function.

(c) Graph the sound wave generated by the 4 key from
t=0tor=0.006s.

High frequency f>
1209 1336 1477 Hz

697 Hz —>
L —_—
freql?:rllcy 770 Hz E] [E]

1 852 Hz —(7) (9)
o4t vz —(*] [0] (%)
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