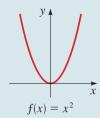
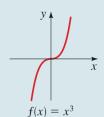
\$3.2 POLYDOMAR FUNCTIONS & THEIR GRAPHS

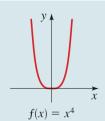
KNOW THE GRAPHS OF POWER FUNCTIONS (AKA MONOMIALS)

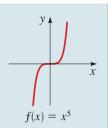
Power functions

$$f(x) = x^n$$









ex. Skelch the Graphs of

(a)
$$y = (x + 2)^4$$

(b)
$$y = -\frac{1}{4} \times^3$$

BIG IDEA: GRAPHS OF POYNDHIALS

·) COUTINOUS -

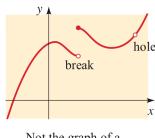
NO GARS, HOLES, JUMPS,
CAN BE DRAWN WITHOUT LIFTURE YOUR PENCIL

DUA

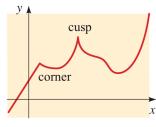
·) SMOOTH

No convers or custs (in calculus you will use the word

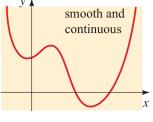
"DIFFERENTIABLE"



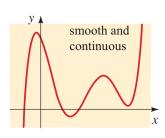
Not the graph of a polynomial function



Not the graph of a polynomial function



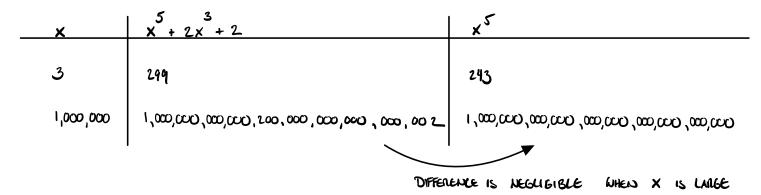
Graph of a polynomial function



Graph of a polynomial function

BIG IDEA: IF
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
 AND $|x|$ is large, then $f(x) \approx a_n x^n$

LEAD TERM DOMUMIES

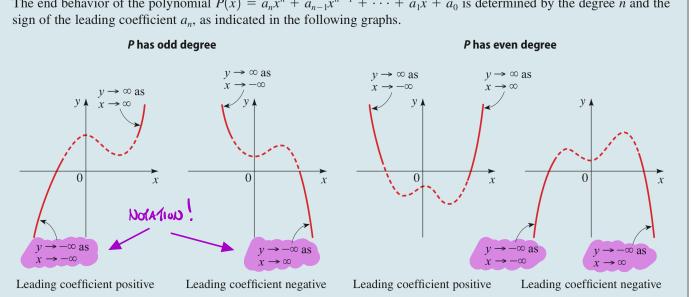


IMPLICATION: GRAPH OF
$$y = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
Looks like the Graph of $y = a_n x^n$ when $|x|$ is large.

i.e. IDENTICAL TAILS $\frac{a_1}{a_1} = \frac{a_1}{a_1} =$

END BEHAVIOR OF POLYNOMIALS

The end behavior of the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is determined by the degree n and the sign of the leading coefficient a_n , as indicated in the following graphs.



(b)
$$y = -\frac{2}{3}x^3 + 5x^2 - \frac{1}{2}x + 7$$

(b) $y = -9x^4 + 2x^3 + 7x - 128$

REAL ZEROS OF POLYNOMIALS

If P is a polynomial and c is a real number, then the following are equivalent:

- **1.** *c* is a zero of *P*.
- **2.** x = c is a solution of the equation P(x) = 0.
- **3.** x c is a factor of P(x).
- **4.** c is an x-intercept of the graph of P.

5. C is a rest of the Porwanial P(x)

INTERMEDIATE VALUE THEOREM FOR POLYNOMIALS

If P is a polynomial function and P(a) and P(b) have opposite signs, then there exists at least one value c between a and b for which P(c) = 0.

EXAMPLE 5 Finding Zeros and Graphing a Polynomial Function

Let $P(x) = x^3 - 2x^2 - 3x$.

(a) Find the zeros of P. (b) Sketch a graph of P.

USE A SIGN CHART TO DETERMINE WHETHER GRAPH IS ABOVE/BELOW X-AXIS
IN BETWEEN THE ZERUS (X-INTERCEPTS)

EXAMPLE 6 Finding Zeros and Graphing a Polynomial Function

Let $P(x) = -2x^4 - x^3 + 3x^2$.

(a) Find the zeros of P. (b) Sketch a graph of P.

EXAMPLE 7 Finding Zeros and Graphing a Polynomial Function

Let $P(x) = x^3 - 2x^2 - 4x + 8$.

- (a) Find the zeros of P. (b) Sketch a graph of P.
- DEF: EACH FACTOR OF A POLYDONIAL CORRESPONDS TO A ZERO/ROOT OF THE ROWOMIAL.

 THE EXPONENT AMACHED TO MAN FACTOR IS CALLED THE MUMIPILITY OF

 THE CORRESPONDING ZERO/ROOT.

 It descrusives the shape of y=P(x) around the zero/root/x-wiercept.

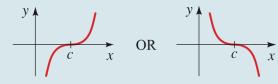
SHAPE OF THE GRAPH NEAR A ZERO OF MULTIPLICITY m

If c is a zero of P of multiplicity m, then the shape of the graph of P near c is as follows.

Multiplicity of c

Shape of the graph of *P* near the *x*-intercept *c*

m odd, m > 1



m even, m > 1

ex. GRAPH THE POLYNOMIAL:

26.
$$P(x) = -(x+1)^2(x-1)^3(x-2)$$

27.
$$P(x) = \frac{1}{12}(x+2)^2(x-3)^2$$

28.
$$P(x) = (x-1)^2(x+2)^3$$

29.
$$P(x) = x^3(x+2)(x-3)^2$$

30.
$$P(x) = (x-3)^2(x+1)^2$$

40.
$$P(x) = \frac{1}{8}(2x^4 + 3x^3 - 16x - 24)^2$$

41.
$$P(x) = x^4 - 2x^3 - 8x + 16$$

42.
$$P(x) = x^4 - 2x^3 + 8x - 16$$

43.
$$P(x) = x^4 - 3x^2 - 4$$
 44. $P(x) = x^6 - 2x^3 + 1$