

HAS INVENSE f (x) = logarithmic Function Base a

Def: logax = y <=> a = x

THE POWER WE TAKE a TO TO MAKE X.

EX. Use the DEFUNTION TO ENAWATE

PROPERTIES OF LOGARITHMS

Property

Reason

1.
$$\log_a 1 = 0$$

We must raise a to the power 0 to get 1.

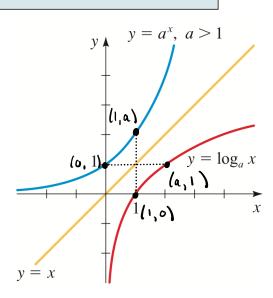
2. $\log_a a = 1$

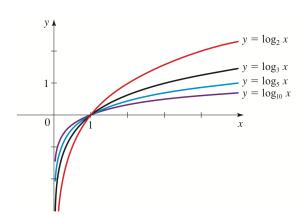
We must raise a to the power 1 to get a.

3. $\log_a a^x = x$

We must raise a to the power x to get a^x .

 $4. \ a^{\log_a x} = x$


 $\log_a x$ is the power to which a must be raised to get x.


OF INVENSE

FUNCTIONS

KNOW THESE GRAPHS!

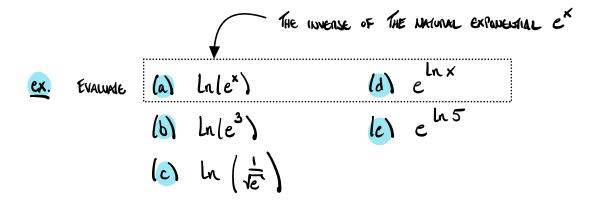
FIGURE 2 Graph of the logarithmic function $f(x) = \log_a x$

EXAMPLE 5 Reflecting Graphs of Logarithmic Functions

Sketch the graph of each function. State the domain, range, and asymptote.

$$(\mathbf{a}) \ g(x) = -\log_2 x$$

(b)
$$h(x) = \log_2(-x)$$


EXAMPLE 6 Shifting Graphs of Logarithmic Functions

Sketch the graph of each function. State the domain, range, and asymptote.

(a)
$$g(x) = 2 + \log_5 x$$

(b)
$$h(x) = \log_{10}(x - 3)$$

THE NATIONAL LOQUETHM

PROPERTIES OF NATURAL LOGARITHMS

THOTERTIES OF NATORAL EOGARITHMS	
Property	Reason
1. $\ln 1 = 0$	We must raise e to the power 0 to get 1.
2. $\ln e = 1$	We must raise e to the power 1 to get e .
3. $\ln e^x = x$	We must raise e to the power x to get e^x .
4. $e^{\ln x} = x$	$\ln x$ is the power to which e must be raised to get x .

EXAMPLE 10 Finding the Domain of a Logarithmic Function

Find the domain of the function $f(x) = \ln(4 - x^2)$.

FIND THE DOMAIN:

77.
$$h(x) = \ln x + \ln(2 - x)$$

78.
$$h(x) = \sqrt{x-2} - \log_5(10-x)$$