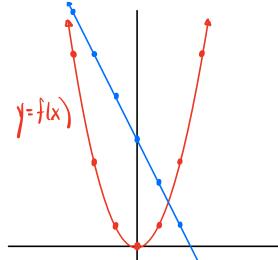
Def: The Graph of a function f is the set of all Points (x,y) that satisfy the Equation y = f(x).

=> Points (x,f(x))

SKEICH THE GRAPH BY PUTTING

X	y = 2+ 1x - 1	(x,y)	— Y ,	
1		(1,2)	5	 \$
2		$(2,3)$ $(3,2+\sqrt{2})$ $(4,2+\sqrt{3})$	3	
3		$(3,2+\sqrt{2})$	1	
4		(5, 4)	τ	
• • • • • • • • • • • • • • • • • • •		[3, 7]	12345	<u></u> X
10		(10,5)	'	

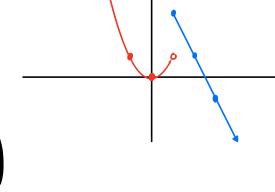

THIS PRICESS OFFIEW LEADS TO INSIGHTS INTO THE FUNCTION F.

e.g. When X increases, y also increases.

(BY LESS & LESS)

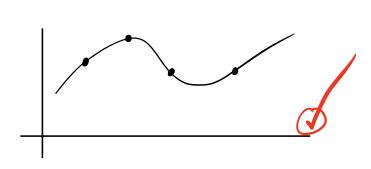
Let $f(x) = x^2 + \hat{\xi} + g(x) = 5 - 2 \times 3$ Sketch the Graphs of $\hat{f} + \hat{\xi} + g(x) = 5 - 2 \times 3$

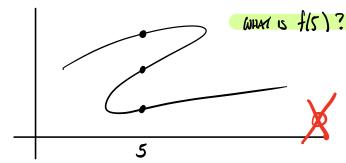
_ ×	f(x)= x ²	(x, f(x))	9(x) = 5 - 2x	(x, y(x))
-3	9	(-3,9)	11	(-3,11)
-2	4	(-2,4)	9	(-2,9)
- (l	(-1,1)	7	(-1,7)
0	0	(0,0)	5	(0,5)
ſ	l	(i,i)	3	(1,3)
2	4	(2,4)	1	(2,1)
3	9	13,9)	-1	(3,-1)
		†		
		PLA THE GONTH OF		



EX SKELL THE GRAPH OF PLECEWISE DEFLUD FUNC.

$$p(x) = \begin{cases} x^2 & \text{if } x < 1 \\ 5 - 2x & \text{if } x \ge 1 \end{cases}$$


EX. SKELL BY PLOPHING THE GRAPH OF



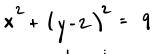
Vendical live Yest

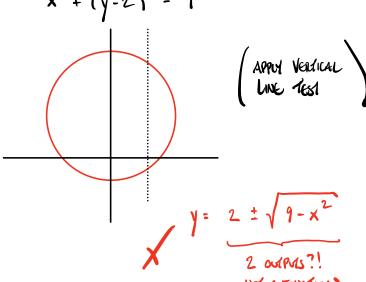
THE GRAPH OF A FUNCTION IS A CHINE IN XY-PLANE.

But not every come in xy-plane is the Graph of a function.

THE VERTICAL LINE TEST

A curve in the coordinate plane is the graph of a function if and only if no vertical line intersects the curve more than once.

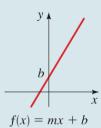



JUESTUS:

WHEN IS THIS GRAPH OF AN EGNATION THE GNAPH OF A FUNCTION?

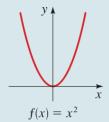
WHEN DOES AND GOVATION DEFINE A FUNCTION

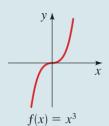
$$y = x^{2} + 3$$
 $f(x) = x^{2} + 3$

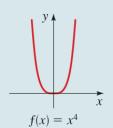

WHEN THE ECUATION CAN BE SOURCE FOR Y SICH THAN FOR ANY # X, THERE IS At most 1 value of y that salisties the Equation

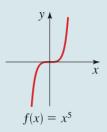
SOME FUNCTIONS AND THEIR GRAPHS

Linear functions

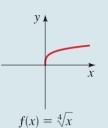

$$f(x) = mx + b$$

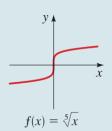




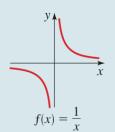

Power functions

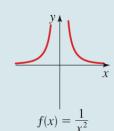
$$f(x) = x^n$$

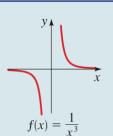


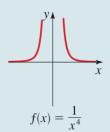

Root functions

$$f(x) = \sqrt[n]{x}$$

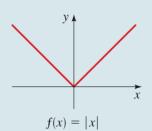


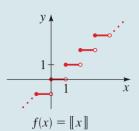





Reciprocal functions

$$f(x) = \frac{1}{x^n}$$




Absolute value function

$$f(x) = |x|$$

Greatest integer function

$$f(x) = [\![x]\!]$$

