Quiz 3

## Math 173 Introduction to Probability and Statistics

- 1. Suppose you own a chicken that lays eggs, and each egg has a 5% chance of having a double-yoke. You gather 12 eggs laid by this chicken and count x the number of eggs with double-yokes.
  - (a) (4 points) What is the expected value E[x] (i.e. mean  $\mu$ ) for x?

NOTE: X IS A BINDMIAL RANDOM VARIABLE

WITH 
$$n=12$$
,  $p=.05$ ,  $p=.95$ 
 $E[X]=\mu=np=(12)(.05)=0.6$ 

(b) (4 points) What is the standard deviation  $\sigma$  for x?

(c) (8 points) What is the probability that you get more than one egg with a double-yoke?

$$P(x>1) = 1 - P(x \le 1) = 1 - .882 = .118$$

LOOK THIS UP IN TABLE 1,

OR  $P(x \le 1) = P(x = 0) + P(x = 1)$ 
 $= C^{12}(.05)^{\circ}(.95)^{12} + C^{12}(.05)^{\circ}(.95)^{11}$ 
 $= 5407 + .3413 = .8820$ 

2. (8 points) Your desk drawer contains 5 new batteries and 3 old batteries. You reach in a take 4 batteries. What is the probability that you took exactly 2 new batteries and 2 old batteries?

Let 
$$x = \#$$
 New Batteries.  $x$  is hypergeometric discrete random variable

AITH  $N = 8$ 
 $M = 5$ 
 $n = 4$ 
 $P(x = 2) = \frac{C_2^5 C_2^3}{C_4^6} = \frac{10 \cdot 3}{70}$ 

- 3. A normal random variable x has mean  $\mu=36$  and standard deviation  $\sigma=4$ . Find each of the following probabilities.
  - (a) (4 points)  $P(x \le 30)$

$$\frac{1}{6} = \frac{x - 1}{6} = \frac{30 - 36}{4} = -1.5$$

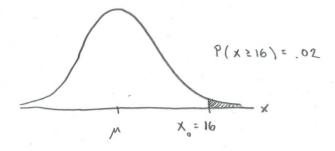
(b) (4 points)  $P(x \ge 44)$ 

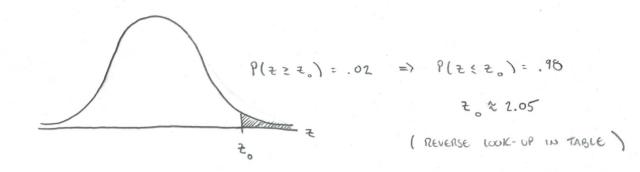
$$t = \frac{44 - 36}{4} = 2$$
,  $P(x \ge 44) = P(t \ge 2) = 1 - P(t \le 2) = 1 - .9772 = .0228$ 

(c) (4 points) P(30 < x < 44)

- 4. Airlines and hotels often grant reservations in excess of capacity to minimize losses due to no-shows. Suppose the records of a hotel show that, on average, 10% of their prospective guests will not claim their reservation. Suppose the hotel accepts 215 reservations and let x equal the number of those reservations that arrive to claim their room.
  - (a) (4 points) What "rule of thumb" allows us to approximate the binomial random variable x with a normal distribution?

(b) (8 points) If there are only 200 rooms in the hotel, what is the probability that all guests who arrive to claim a room will receive one?


Note: Since 
$$X = \#$$
 successes =  $\#$  Guests Who ARRIVE TO CLAIM THEIR ROOM.


WE HAVE  $p = .9$ ,  $g = .1$ 

$$\mu = np = (215)(.9) = 193.5$$

$$Z = \frac{200.5 - 193.5}{4.3989} = 1.5913$$

5. (8 points) A peanut farmer owns a peanut dispenser that can be set to dispense peanuts in amounts that are normally distributed, with mean  $\mu$  and standard deviation  $\sigma=0.25$  ounces. If the farmer wishes to use the machine to fill containers that hold 16 ounces of peanuts and wants to overfill only 2% of the containers, at what value of  $\mu$  should the farmer set the peanut dispenser?





$$\frac{2.05}{6} = \frac{16 - \mu}{0.25}$$

$$(2.05)(0.25) = 16 - \mu$$

M= 16- (2.05) (.25)