
1. Here are 20 measurements (listed from least to greatest).

$$1.1,\, 2.0 / 2.3,\, 2.9 / 4.0 / 4.7,\, 5.0,\, 5.1,\, 5.3,\, 5.3,$$

(a) (8 points) Create a relative frequency histogram below using 6 classes of width 1.2. The first class should be [1.1, 2.3).

CLASS	FILLWEN	4	RELATIVE	FREGUENCY
[1.1, 2.3]	2		2/2	٥
[2.3, 3.5)	2		2/2	0
[3.5, 4.7]	1		1/2	.0
[4.7, 5.9]	7		7/2	-0
[5.9,7.1]	5		5/1	O
[7.2, 8.3)	3		3/2	. 0

NOTE THAT THE HURIZUNTAL AXIS IS LABELLED LIKE A MABER LINE.

(b) (4 points) What proportion of the measurements are greater than or equal to 6.0?

$$\frac{8}{20}$$
 or $\frac{2}{5}$ or 40%

(c) (4 points) How would you best describe the distribution: right-skewed, left-skewed, or symmetric?

- 2. You are given a sample of n=7 measurements: 8, 7, 10, 13, 8, 13, 11
 - (a) (4 points) What is the median, m?

(b) (4 points) What is the mean, \bar{x} ?

$$\bar{x} = \frac{\sum x_i}{n} = \frac{7 + 8 + 6 + 10 + 11 + 13 + 13}{7} = \frac{70}{7} = 10$$

(c) (4 points) What is/are the mode/modes, M?

(d) (4 points) What is the variance, s^2 ?

(e) (4 points) What is the standard deviation, s?

3. (4 points) Suppose a sample of 50 measurements are collected with mean $\bar{x} = 35$ and standard deviation s = 8. According to Tchebysheff's theorem, at least what proportion of measurements lie between 11 and 59 (i.e. within 3 standard deviations of the mean)?

$$1 - \frac{1}{k^{2}} \longrightarrow 1 - \frac{1}{3^{2}} = \frac{8}{9}$$
At wast $\frac{8}{9}$ | At wast 88.8889 % | At waste 45 Measurements.

4. A Sample space S consists of five simple events with the following probabilities.

$$P(E_1) = P(E_2) = .15$$
 $P(E_3) = .4$ $P(E_4) = .1$ $P(E_5) = ?$

(a) (4 points) Find the probability of the simple events E_5 .

PROBABILITIES OF SIMPLE EVENTS

MUST ADD UP TO 1.

.15 + .15 + .4 + .1 +
$$P(E_5) = 1$$
 => $P(E_5) = .2$

(b) (4 points) Find the probabilities for the following two events.

$$A = \{E_1, E_3, E_4\} \qquad B = \{E_2, E_3\}$$

$$P(A) = P(E_1) + P(E_3) + P(E_4) = .15 + .4 + .1 = .65$$

$$P(B) = P(E_1) + P(E_3) = .15 + .4 = .55$$

(c) (4 points) List the simple events that are either in event A or event B or both.

$$E_1$$
, E_2 , E_3 , E_4

(d) (4 points) List the simple events that are in both event A and event B.