Pours 90 Paurs = PENCENTAGE

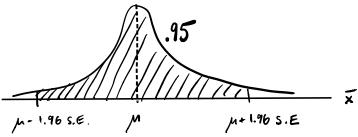
38.5 INTERNAL ESCUATION

CELARAL LIMIT THEOREM:

WHEN SAMPLE SIZE N = 30 (on IF ROBLATION HAS DOWNER DIMERBUTION) THEN THE SAMPLE DISTRIBUTION OF THE SAMPLE MEAN X IS NOTHBURY DISTRIBUTED WITH MEAN M (SAME AS P.P.) AND SANDARD EDITOR S.E. = $\frac{C}{\sqrt{3}} \approx \frac{3}{\sqrt{3}} \approx$

STAND. DEV. TO APPROXIMATE THE RAUMUN SANDARD DEVIATION .

P(SAMPLE MEAN X IS WITHW 1.96 S.E. OF POP MEAN M) = .95



"I POP MEAN IN IS WITHIN 1.96 S.E. OF SAMPLE MEAN X) = . 95

95% PROB IN IN THIS INTERVAL

X + 1.96 S.F X-1.96 S.E.

=> 5% PROB M IS NOT IN THIS INTERNAL

Confidence Intervals

CONFIDENCE LEVEL (PRUB MAND IN IS IN) THE INTERIVAL ESTIMATE)	X = PRUB THAT IN IS DOT IN THE ILLETUAL EXIMALE	2/2	Z 2/2
. 95	.05	.025	1.96
. 90	.10	.05	1.645
.98	.02	.٥١	2.33
.99	.01	.005	2.58
1005 = .995 .005			

8.33 Acid Rain Acid rain, caused by the reaction of certain air pollutants with rainwater, is a growing problem in the United States. Pure rain falling through clean air registers a pH value of 5.7 (pH is a measure of acidity: 0 is acid; 14 is alkaline). Suppose water samples from 40 rainfalls are analyzed for pH, and \bar{x} and s are equal to 3.7 and .5, respectively. Find a 99% confidence interval for the mean pH in rainfall and interpret the interval. What assumption must be made for the confidence interval to be valid?

Sample Data
$$\overline{X} = 3.7$$

$$S = .5$$

$$S.E = \frac{6}{\sqrt{N}} \approx \frac{S}{\sqrt{N}}$$

$$= \frac{.5}{\sqrt{40}}$$

Considence level 99% =>
$$x = .01$$
, $x_2 = .005$, $x_{-2/2} = 2.58$

$$\frac{1}{3.7 - 2.58 \left(\frac{.5}{\sqrt{40}}\right)}$$
3.7 - 2.58 $\left(\frac{.5}{\sqrt{40}}\right)$
3.7 - 2.58 $\left(\frac{.5}{\sqrt{40}}\right)$
3.9040

CONFIDENCE INTERVAL:
$$\left[\bar{X} - Z_{\alpha/2} S.E. \right]$$

ASSUMPTION: PAINFALLS IN

SAMPLE MUST BE RUNDOMLY

SELECTED.

If this experiment were to be repeated over and over many times, and a confidence interval is generated each time, just like this, then approximately 99% of those confidence intervals would contain the true population mean.

8.35 Hamburger Meat The meat department of a local supermarket chain packages ground beef using meat trays of two sizes: one designed to hold approximately 1 pound of meat, and one that holds approximately 3 pounds. A random sample of 35 packages in the smaller meat trays produced weight measurements with an average of 1.01 pounds and a standard deviation of .18 pound.

- **a.** Construct a 99% confidence interval for the average weight of all packages sold in the smaller meat trays by this supermarket chain.
- **b.** What does the phrase "99% confident" mean?
- **c.** Suppose that the quality control department of this supermarket chain intends that the amount of ground beef in the smaller trays should be 1 pound on average. Should the confidence interval in part a concern the quality control department? Explain.

Confidence instalval:
$$\left[\bar{\mathbf{x}} - \mathbf{z}_{\mathbf{x}_{1}} \mathbf{S.E.} \right]$$

Sample Data:
$$\bar{X} = 1.01$$
 n=35
S = .16

S.E:
$$\frac{G}{\sqrt{n}} \approx \frac{S}{\sqrt{n}} = \frac{.16}{\sqrt{35}}$$

Confidence level (Paus May) ja is in The interval eximate	X = 9aas 9aa1 µ is b <u>ol</u> in The instalual estimate	2/2	Z 2/2
. 95	.05	.025	1.96
. 10	.10	٥٥.	1.645
.98	.02	.01	2.33
.99	.01	.005	2.58

99% confidence interval:
$$\left[1.01 - 2.58 \left(\frac{.18}{\sqrt{35}} \right) \right]$$
 = $\left[.9315 \right]$ 1.0865 $\left[\frac{.18}{\sqrt{35}} \right]$ 5 INCE $\left[1.8 \right]$ IN THE INTERVAL, THIS DOES NOT SUBJECT THAT

If this experiment were to be repeated over and over many times, and a confidence interval is generated each time, just like this, then approximately 99% of those confidence intervals would contain the true population mean.

90% CONFIDENCE IMERNAL:
$$\left[1.01 - 1.645 \left(\frac{.18}{\sqrt{35}} \right), 1.01 + 1.645 \left(\frac{.18}{\sqrt{35}} \right) \right]$$

$$= \left[.9599, 1.0601 \right]$$

CONFIDENCE INTERNALS FOR POPULATION PROPORTIONS

5.E. =
$$\sqrt{\frac{p_0}{n}} \approx \sqrt{\frac{\hat{p}\hat{g}}{n}}$$

9 = 1 - p			
CONFIDENCE LEVEL (PEUS MAN M IS IN THE INTERVAL ESTIMATE)	ox = Paul May ju is <u>bol</u> (w) The Iuseaval estimate	×/2	- Z _{4/2}
. 95	.05	.025	1.96
	.10	.05	1.645
	.02.	.01	2.33
.99	01	.005	2.58

Confidence interval:
$$[\hat{p} - Z_{\alpha/2} S.E., \hat{p} + Z_{\alpha/2} S.E.]$$

For p

8.40 Gonna' Vote? How likely are you to vote in the next national election? In a survey by *Pew Research*, ¹⁰ fully 77% of the registered Republican voters are *absolutely* going to vote this year while only 65% of Democrats are *absolutely* going to vote in the next election. The sample consisted of 469 registered Republicans, 490 registered Democrats, and 480 registered Independents.

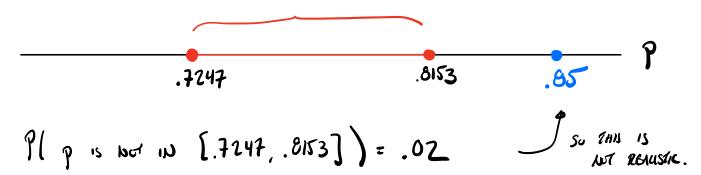
- a. Construct a 98% confidence interval for the proportion of registered Republicans who say they are absolutely going to vote in the next election. If a Republican senator predicts that at least 85% of registered Republicans will absolutely vote in the next election, is this figure realistic?
- **b.** Construct a 99% confidence interval for the proportion of registered Democrats who say they are *absolutely* going to vote in the next election.

(a)
$$n = 469$$
 $\hat{p} = .77$ $\hat{g} = .23$

96%. CONF. INS => $\frac{2}{4} = 2.33$

S.E. = $\sqrt{\frac{92}{n}} \approx \sqrt{\frac{\hat{p}\hat{q}}{n}} = \sqrt{\frac{(.77)(.23)}{469}}$

If this experiment were to be repeated over and over many times, and a confidence interval is generated each time, just like this, then approximately 99% of those confidence intervals would contain the true population proportion.



- **8.36 Same-Sex Marriage** The results of a *CBS News Poll* concerning views on same-sex marriage and gay rights given in Exercise 7.68 showed that of n = 1082 adults, 40% favored legal marriage, 30% favored civil unions, and 25% believed there should be no legal recognition.⁷ The poll reported a margin of error of plus or minus 3%.
- **a.** Construct a 90% confidence interval for the proportion of adults who favor the "legal marriage" position.
- **b.** Construct a 90% confidence interval for the proportion of adults who favor the "civil unions" position.
- **c.** How did the researchers calculate the margin of error for this survey? Confirm that their margin of error is correct.

Confloence level (Paus MAI II IS IN (THE ILITERIVAL ESTIMATE)		x/2	Z 4/2
. 95	.05	.025	1.96
. 10	.10	که.	1.645
.98	.02	ان.	2.33
.99	.01	.005	258

S.E. =
$$\sqrt{\frac{\hat{p}}{n}} \approx \sqrt{\frac{\hat{p}\hat{g}}{n}}$$

CONFIDENCE INTERVAL:
$$[\hat{p} - Z_{\alpha/2} S.E., \hat{p} + Z_{\alpha/2} S.E.]$$

[a) GINEN:
$$n = 1082$$
, $\hat{\beta} = .40$, $\hat{g} = .60$

$$\therefore \text{ S.E.} \approx \sqrt{\frac{(.4)1.6)}{1082}}$$

$$90\% \text{ CONF. INT.} : \left[.4 - 1.645 \sqrt{\frac{(.4)1.6)}{1082}} \right]$$

$$\left[.3755 \right] .4245$$

Plants given fertilizer grow 5 inches taller than plant not given fertilizer. \star

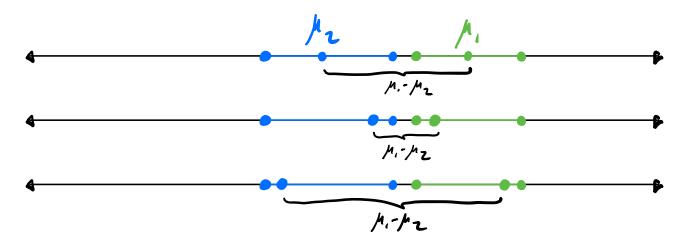
Clients following exercise program X lost 5 pounds more than clients following exercise program Y.

City dwellers watch 5 hours less TV per week than non-city dwellers.

Etc.

* Two Populations: Pup 1: Plants Given Fendicised - 99% conf int 1/2.

Pop 2: Plants but Green Fendicised - 99% cour int 1/2



	Poloration 1	Population Z	Sample 1	Sample 2
MEAN	/u,	MZ	X,	Xz
Staw.Dev.	G '	ζ_{r}	S,	Sz
SIZE	Ν,	N ₂	n,	n ₂

Now we mad to estimate $(\mu_1 - \mu_2)$ (DFF. or Pap. Means). C.L.T. => $(\bar{X}_1 - \bar{X}_2)$ is an unbased estimator.

Furthermore, the sampling distribution of the differences $\overline{X}_1 - \overline{X}_2$ HAS

MEAN $\mu_1 - \mu_2$ ξ STANDARD ENGAL S.E. = $\sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2}} \approx \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$.

THE SAMPLING DISTRIBUTION OF $(\bar{x}_1 - \bar{x}_2)$ is exactly bornal if the Populations are boundary Distributed, and Approximately paraller both n_1 ξ n_2 = 30.

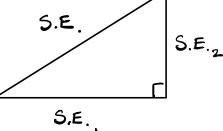
CONFIDENCE INTERNAL FOR MI-MZ:

$$\left\{ \left(\overline{x}_{1} - \overline{x}_{2} \right) - \frac{2}{\alpha / 2} \quad S.E. \quad , \quad \left(\overline{x}_{1} - \overline{x}_{2} \right) + \frac{2}{\alpha / 2} \quad S.E. \quad \right\}$$

$$S.E. \quad \sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}} \approx \sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}.$$

Note: S.E.
$$1 = \frac{S_1}{\sqrt{N}}$$
 S.E. $2 = \frac{S_2}{\sqrt{N}}$

S.E. =
$$\sqrt{S.E._{1}^{2} + S.E._{2}^{2}}$$



The wearing qualities of two types of automobile tires were compared by road-testing samples of $n_1 = n_2 = 100$ tires for each type and recording the number of miles until wearout, defined as a specific amount of tire wear. The test results are given in Table 8.4. Estimate $(\mu_1 - \mu_2)$, the difference in mean miles to wearout, using a 99% confidence interval. Is there a difference in the average wearing quality for the two types of tires?

TABLE 8.4 Sample Data Summary for Two Types of Tires

Tire 1	Tire 2
$\bar{x}_1 = 26,400 \text{ miles}$	$\bar{x}_2 = 25,100 \text{ miles}$
$s_1^2 = 1,440,000$	$s_2^2 = 1,960,000$

CONFIDENCE INTERNAL FOR MI-MZ:

$$\left\{ \left(\overline{X}_{1} - \overline{X}_{2} \right) - \frac{1}{2} x_{1} \right\} = \left\{ \overline{X}_{1} - \overline{X}_{2} \right\} + \frac{1}{2} x_{1} + \frac{1}{2} x_{2} \right\} = \left\{ \overline{X}_{1} - \overline{X}_{2} \right\} + \frac{1}{2} x_{1} + \frac{1}{2} x_{2} +$$

$$X_1 - X_2 = 26,400 - 25,100 = 1,300$$

S.E. $\approx \sqrt{\frac{1,440,000}{100} + \frac{1,960,000}{100}} = 184.39$

IS THERE A DEFERENCE?

1775.73

Note: IF CONF. IN. FOR DIFF. OF P.M. MCANS

CONTAINS (CONTAINS) (THEN THERE MY BE NO DIFFERENCE

BELLIEEN PRINTINGS.

IF 11 DOES NOT CONTAIN O, THEN SANGLE DATA
SUBGESTS HAT THEN IS & DIFFERENCE BETWEEN
THE POPULATION MEANS