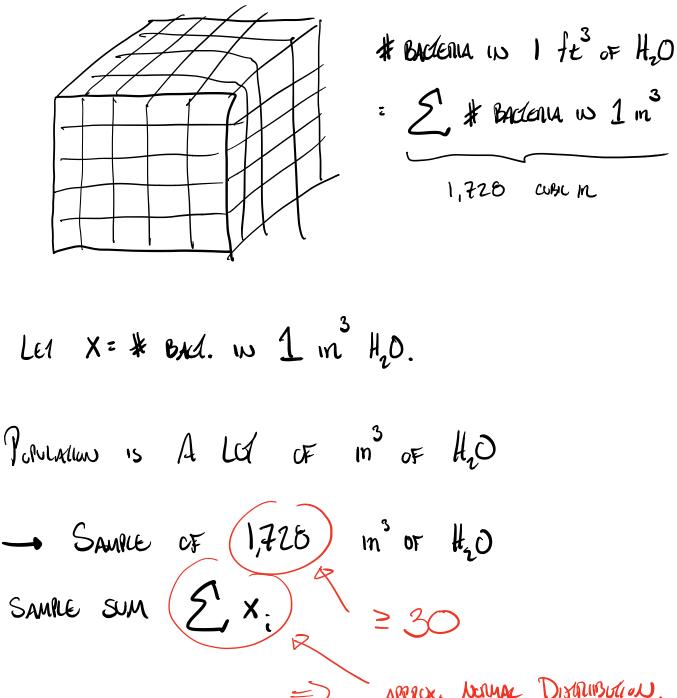
7.29 Bacteria in Water Use the Central Limit Theorem to explain why a Poisson random variable—say, the number of a particular type of bacteria in a cubic foot of water—has a distribution that can be approximated by a normal distribution when the mean μ is large. (HINT: One cubic foot of water contains 1728 cubic inches of water.)



The number of bacteria in one cubic foot is actually the sum of thumper of bacteria in 1728 cubic inches. When adding the measurements of more than 30 individuals to make a single sample sum, the sampled sum is approximately normally distributed.

Central Limit Theorem

If random samples of n observations are drawn from a nonnormal population with finite mean μ and standard deviation σ , then, when n is large, the sampling distribution of the sample mean \bar{x} is approximately normally distributed, with mean μ and standard deviation

The approximation becomes more accurate as n becomes large.

1000 N=1000

SAMPLE SIZE N= 40 TOPOCAPITOD

C 40 = 5... (5.56 × 102)

SINCLE MONIDUAL IN POPULATION

CAN BE USED TO OBTAIN

A VALUE OF A R.U.

CONSIDERNO ACC INDIVIDUALS É

ALL VALUES OF X, WE CAN

CALCULATE MEAN M

i saw. Dev. 6 Fal X.

New Navon Variable X

SAMPLE MEAN

TO DEPERMINE THE VALUE OF X

- (1) COLLECT A RANDOMLY SLLECTED SAMPLE OF THE INDIVIDUALS FROM POPULATION.
- (2) ADD UP THE VALUES X FOR THE INDIVIDUALS & DIVIDE 68 N. TO PRODUCE X.

X IS APPRIX NORMALLY DISTRIBUTED /

F) CITHER

(1) X 15 Wilmout Distributed

(2) n = 30

Normal

MEAN M

S'ALD. DEV.

5

n=30

THE SAMPLING DISTRIBUTION OF THE SAMPLE MEAN, \bar{x}

• If a random sample of n measurements is selected from a population with mean μ and standard deviation σ , the sampling distribution of the sample mean \bar{x} will have mean μ and standard deviation*

$$\frac{\sigma}{\sqrt{n}}$$

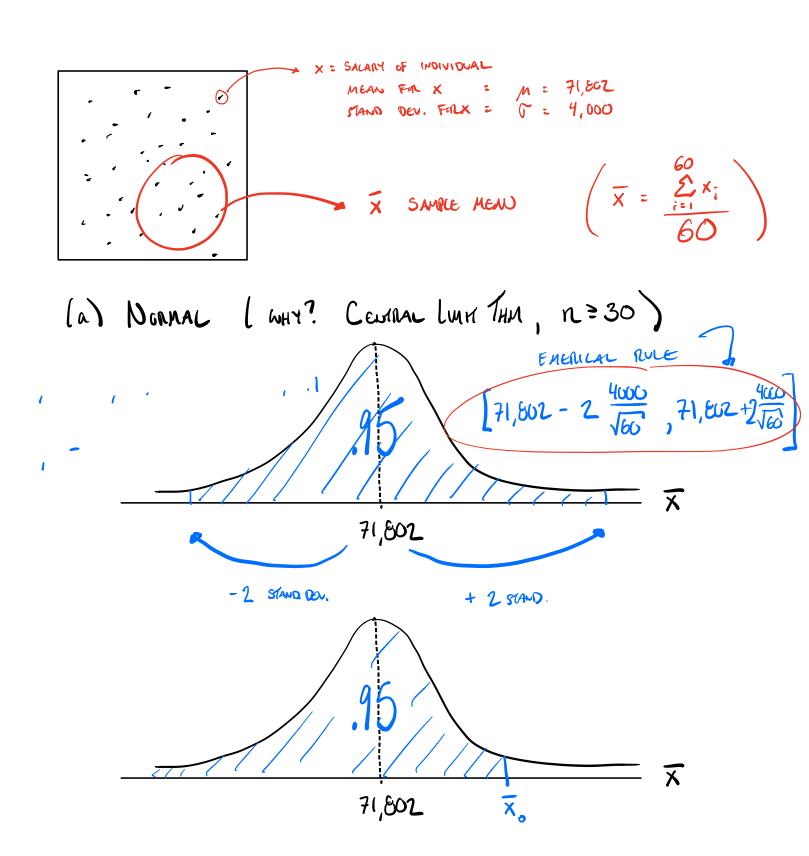
- If the population has a *normal* distribution, the sampling distribution of \bar{x} will be *exactly* normally distributed, *regardless of the sample size*, n.
- If the population distribution is *nonnormal*, the sampling distribution of \bar{x} will be *approximately* normally distributed for large samples (by the Central Limit Theorem). Conservatively, we require $n \ge 30$.
- **7.23** A random sample of size n = 40 is selected from a population with mean $\mu = 100$ and standard deviation $\sigma = 20$.
- **a.** What will be the approximate shape of the sampling distribution of \bar{x} ?
- **b.** What will be the mean and standard deviation of the sampling distribution of \bar{x} ?

(b) MEAN FOR
$$X = MEAN$$
 FOR $X = M = 100$
STAND. DEV. FOR $X = \frac{STAND DEN FOR \times}{\sqrt{n}} = \frac{C}{\sqrt{10}} = \frac{2C}{\sqrt{10}}$

- **7.26 Faculty Salaries** Suppose that college faculty with the rank of professor at public 2-year institutions earn an average of \$71,802 per year⁷ with a standard deviation of \$4000. In an attempt to verify this salary level, a random sample of 60 professors was selected from a personnel database for all 2-year institutions in the United States.
- **a.** Describe the sampling distribution of the sample $\frac{1}{x}$

- **b.** Within what limits would you expect the sample average to lie, with probability .95?
- c. Calculate the probability that the sample mean \bar{x} is greater than \$73,000? $\approx 1\%$
- **d.** If your random sample actually produced a sample mean of \$73,000, would you consider this unusual? What conclusion might you draw?

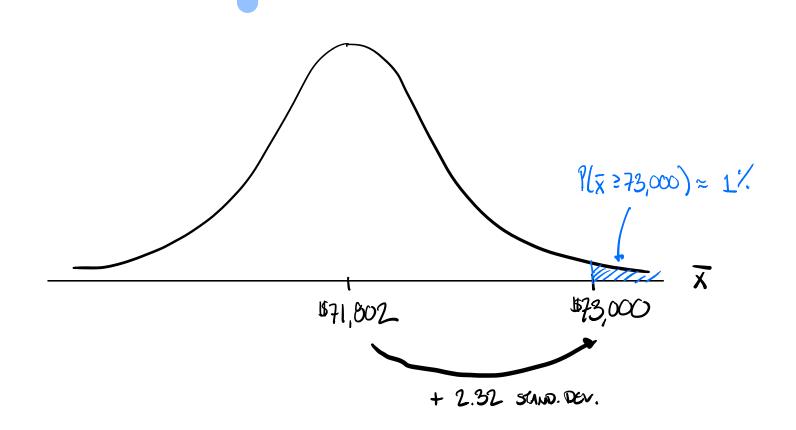
1 2.32 STAND DEV. ABOVE MEAN



(c)
$$P(\bar{x} > 73,000)$$
 $\bar{x} \sim NORMAL (71,802, \frac{4000}{\sqrt{60}})$

MEAN STAND DEN.

STANDANDIZE $Z = \frac{R.N. - MEAN}{STAND.DEN}$
 $Z = \frac{\bar{x} - M}{\sqrt{6}\sqrt{10}}$
 $Z = \frac{1 - M}{\sqrt{600}}$
 $Z = \frac{1 - M}{\sqrt{$



.9904

.9927

.9906

.9929

.9909

.9931

.9911

.9932

.9913

.9934

.9916

.9936

.9901

.9925

2.3

2.4

.9893

.9918

.9896

.9920

.9922

Assuming the population mean is 71802 and population standard deviation is 4000, it is unlikely to obtain a sample mean of 73000 (n=60). Since this happened on the first try, perhaps the assumptions are incorrect. Perhaps the population mean is actually higher than 71802... or perhaps the standard deviation is higher than 4000... or perhaps the sample was not random.

EXAM # 2 Web 11/18

- \$5.2 BIDDMAL PREB. DISTRIBUTION.

- \$6.1-6.3 NORMAL DISTRIBUTION

- \$6.4 NORMAL APPLOX. TO BINOMIAL DISTRIBUTION

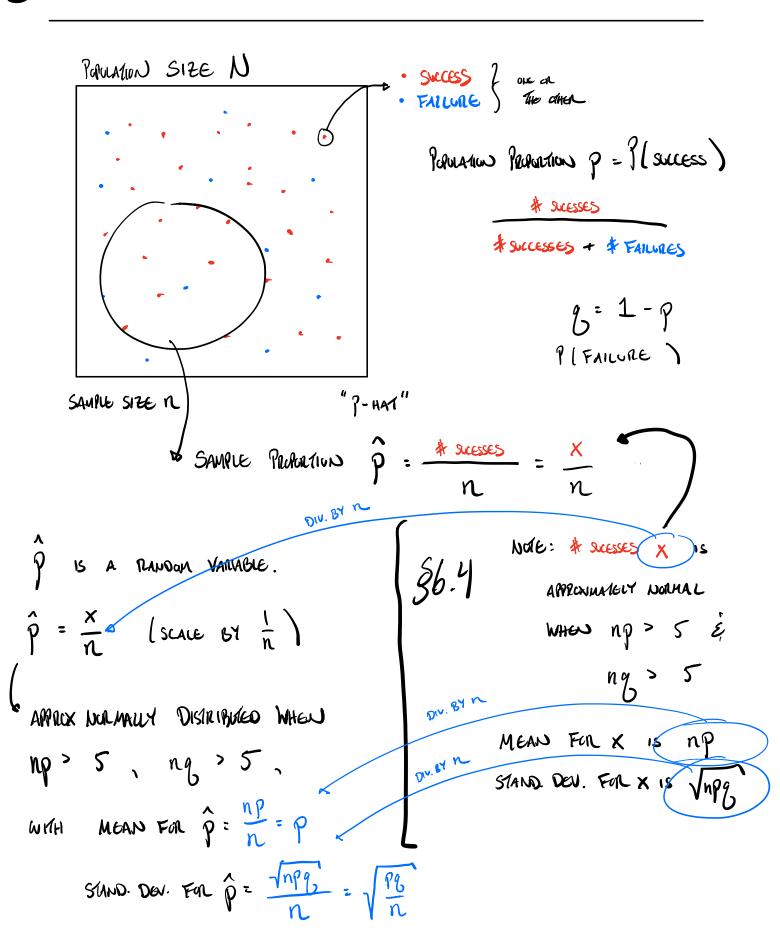
- \$7.4-7.5 CENTRAL LIMIT THEOREM

SAMPLE MEANS X, SAMPLE SWIS £X

- \$7.6 CENTRAL LIMIT THIN FOR

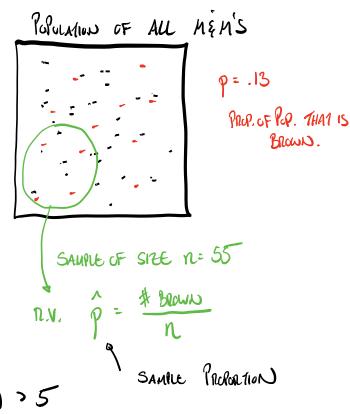
SAURLE PROPORTIONS P

\$7.6 SAMPLING DISTRIBUTION FOR SAMPLE PENGLACION



7.45 M&M'S An advertiser claims that the average percentage of brown M&M'S candies in a package of milk chocolate M&M'S is 13%. Suppose you randomly select a package of milk chocolate M&M'S that contains 55 candies and determine the proportion of brown candies in the package.

- **a.** What is the approximate distribution of the sample proportion of brown candies in a package that contains 55 candies?
- **b.** What is the probability that the sample percentage of brown candies is less than 20%?
- **c.** What is the probability that the sample percentage exceeds 35%?
- **d.** Within what range would you expect the sample proportion to lie about 95% of the time?



(b)
$$\Re\left(\hat{p} < .20\right)$$

ANTELIX LIGHTARL WITH MEAN. $P = .13$

STAND. DEV. FOR $\hat{p} = S.E. = \sqrt{\frac{PQ}{n}} = \sqrt{\frac{(.13)(.67)}{55}}$

STANDARDIZE: $Z = \frac{R.V. - Mean}{S.E.} = \frac{\hat{p} - p}{\sqrt{\frac{PQ}{n}}}$

$$\frac{1}{10^{-13}(.67)} = \frac{10^{-13}}{10^{-13}(.67)} = \frac{10^{-13}}{10^{-13}$$

1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767