7.29 Bacteria in Water Use the Central Limit
Theorem to explain why a Petsses=random variable—
say, the number of a particular type of bacteria in a
cubic foot of water—has a distribution that can be
approximated by a normal distribution when the mean

w 1s large. (HINT: One cubic foot of water contains
1728 cubic inches of water.)
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The number of bacteria in one cubic foot is actually the sum of thumper of bacteria in (728 cubic inches. When

adding the meagurements of more than 30 individuals to make a single sample sum, the sampled sum i
approximately normally distributed.



Central Limit  If random samples of n observations are drawn from a nonnormal population with
Theorem finite mean u and standard deviation o, then, when # is large, the sampling distribu-
tion of the sample mean x is approximately normally distributed, with mean w and

standard deﬁ&
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The approximation becomes more accurate as n becomes large.
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THE SAMPLING DISTRIBUTION OF THE
SAMPLE MEAN, x

e If a random sample of n measurements is selected from a population with
mean u and standard deviation o, the sampling distribution of the sample
mean x will have mean w and standard deviation”

o

Vn

» If the population has a normal distribution, the sampling distribution of x will
be exactly normally distributed, regardless of the sample size, n.

» If the population distribution is nonnormal, the sampling distribution of x
will be approximately normally distributed for large samples (by the Central
Limit Theorem). Conservatively, we require n = 30.

7.23 A random sample of size n = 40 1s selected
from a population with mean u = 100 and standard
deviation o = 20.

a. What will be the approximate shape of the sampling
distribution of x?

b. What will be the mean and standard deviation of
the sampling distribution of x?
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7.26 Faculty Salaries Suppose that college faculty ~P- Within what limits would you expect the sample

with the rank of professor at public 2-year institutions average to lie, with probability .95? B
earn an average of $71,802 per year7 with a standard c. Calculate the probability that the sample mean x is
deviation of $4000. In an attempt to verify this salary greater than $73,0007 =< |Z

level, a random sample of 60 professors was selected ~ d. If your random sample actually produced a sample
from a personnel database for all 2-year institutions in mean of $73,000, would you consider this unusual?
the United States. What conclusion might you draw?

a. Describe the sampling distribution of the sample
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Assuming the population mean is 71802 and population standard deviation
ie 4000, it ig unlikely to obtain a sample mean of 73000 (n=60). Since
this happened on the first try, perhaps the assumptions are incorrect.
Perhaps the population mean is actually higher than 71802.... or perhaps the
standard deviation ig higher than 4000.... or perhaps the sample was not
random.
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7.45 M&M'S An advertiser claims that the average
percentage of brown M&M’S candies in a package of
milk chocolate M&M'’S is 13%. Suppose you ran-
domly select a package of milk chocolate M&M’S that
contains 55 candies and determine the proportion of

brown candies in the package.

a.

What is the approximate distribution of the sample
proportion of brown candies in a package that con-

tains 55 candies?

of brown candies is less than 20%?

exceeds 35%?

proportion to lie about 95% of the time?
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. What is the probability that the sample percentage
. What is the probability that the sample percentage

. Within what range would you expect the sample
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