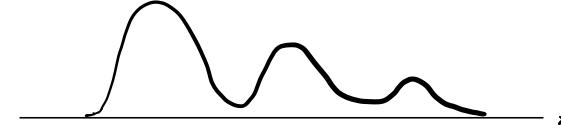

6.50 The Rh Factor In a certain population, 15% of the people have Rh-negative blood. A blood bank serving this population receives 92 blood donors on a particular day.

- **a.** What is the probability that 10 or fewer are Rh-negative?
- **b.** What is the probability that 15 to 20 (inclusive) of the donors are Rh-negative?
- **c.** What is the probability that more than 80 of the donors are Rh-positive?

1c)

BINOMAL: SAMPLE SIZE

$$769. \, \text{SIZE}$$
 $769. \, \text{SIZE}$
 7


87.4,7.5 CENTRAL LINK THEOREM

SAMPLING DISTRIBUTION: DISTRIBUTION OF A MANDOM VARIABLE \overline{X} : SAMPLE MEAN.

EXPERIMENT IS TO TAKE AN AVENAGE (MEAN) OF A SAMPLE

- (1) GAMPIE OF SIZE N
- 1) Could a MEASUREMENT FOR EACH OBSECT IN YOUR SAMPLE
- 3) RECORD A SINGLE VALUE FOR X = MEAN OF THOSE INIVIDUAL
 MEASUREMENS.

e.g. Let x = LENGTH OF FISH IN LAKE A.

X is the mean Lewish of 12 nandamy selected Fish

AVENAGES OF MEASUREMENTS OF SAMPLES (SAMPLE MEANS)
TWO TO BE CLOSE TO THE POPULATION MEAN.

EXIMENE CASE: SANGLE SIZE = PANATION SIZE

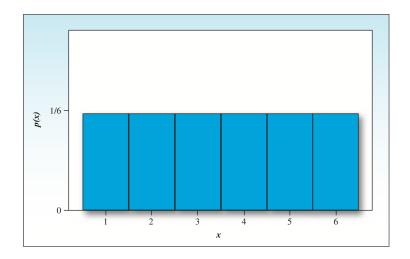
DISTRIBUTION FOR X

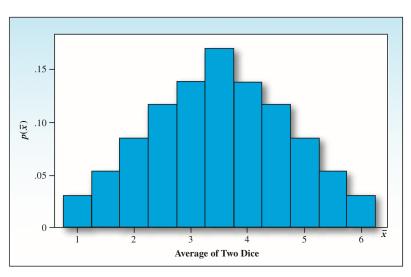
DISTRIBUTION FOR X (SAMPLE MEAN)

Distribution of individual measurements taken from a population

Distribution of averages (or sums) of n measurements taken from a random sample of n individuals.

The experiment is to record a single measurement.

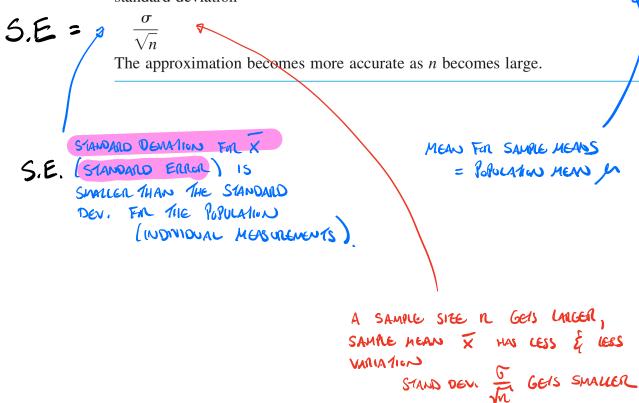

The experiment is to take n measurements and average them together to produce the mean


The distribution of x can have any shape!

The distribution for sample means x-bar is approximately normal!

Plan 2 once & necond x = near of 2 once

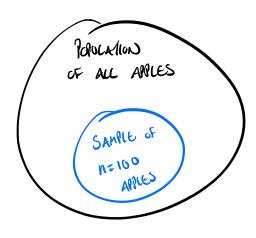
	1	l	3	4	\$	6
l	1	1.5	2	2.5	3	3.5
ı	1.5	2	2.5	3	3.5	4
3	2	2.5	3	3.5	4	4.5
Ч	2.5	3	3.5	ч	4.5	5
S	3	3.5	ч	4.5	5	5.5
6	3.5	4	4.5	2.5 3 3.5 4 4.5	5.5	6

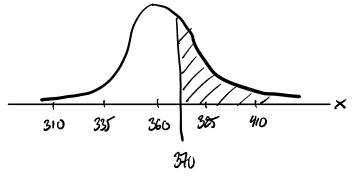


Ansilvan

Central Limit Theorem

If random samples of n observations are drawn from a nonnormal population with finite mean μ and standard deviation σ , then, when n is large, the sampling distribution of the sample mean \bar{x} is approximately normally distributed, with mean μ and standard deviation




Suppose there is an apple orchard and let x be the weight a randomly selected apple. Suppose that mean weight of all apples in the orchard is 360g, and the standard deviation is 25g.

1. Assuming the distribution of weights of apples is normal, find the probability of selecting a single apple that weighs more than 370g.

2. Find the probability of selecting IOO apples with an average weight above

370g.

$$\Re(x^{2}370) = \Re(z^{2}\frac{370-360}{25})$$

= 1 - $\Re(z^{2}.4)$
= 1 - .6554 = (.3446)

.01	.02	.03	.04	.05	.06	.07	.08	.09
.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.5832	.5 871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
	.5040 .5438 .5832 .6217	.5040 .5080 .5438 .5478 .5832 .5 871 .6217 .6255	.5040 .5080 .5120 .5438 .5478 .5517 .5832 .5 871 .5910 .6217 .6255 .6293	.5040 .5080 .5120 .5160 .5438 .5478 .5517 .5557 .5832 .5 871 .5910 .5948 .6217 .6255 .6293 .6331	.5040 .5080 .5120 .5160 .5199 .5438 .5478 .5517 .5557 .5596 .5832 .5 871 .5910 .5948 .5987 .6217 .6255 .6293 .6331 .6368	.5040 .5080 .5120 .5160 .5199 .5239 .5438 .5478 .5517 .5557 .5596 .5636 .5832 .5 871 .5910 .5948 .5987 .6026 .6217 .6255 .6293 .6331 .6368 .6406	.5040 .5080 .5120 .5160 .5199 .5239 .5279 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5832 .5 871 .5910 .5948 .5987 .6026 .6064 .6217 .6255 .6293 .6331 .6368 .6406 .6443	.5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5832 .5 871 .5910 .5948 .5987 .6026 .6064 .6103 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480

$$P(\bar{x} \ge 370) = P(\bar{z} \ge \frac{370 - 360}{1.5}) = P(\bar{z} \ge 4) = 1 - P(\bar{z} \le 4)$$

$$\approx 1 - 1$$

X HAS MEAN M= 360 (SAME AS POPULATION)

STAND DEVI OF
$$\bar{X}$$
 = S.E. = $\frac{G}{\sqrt{N}} = \frac{25}{\sqrt{100}} = 2.5$

STANDARD EDGOL

STAND. DEU. 5

7.15 Random samples of size *n* were selected from populations with the means and variances given here. Find the mean and standard deviation of the sampling distribution of the sample mean in each case:

a.
$$n = 36$$
, $\mu = 10$, $\sigma^2 = 9$ \longrightarrow $6 = 3$

c.
$$n = 8, \mu = 120, \sigma^2 = 1$$

(a) MEAN FOR SAMPLE MEANS \overline{X} IS M = 10STANDARD DENATION FOR SAMPLE MEANS \overline{X} IS S.E. = $\frac{5}{M} = \frac{3}{736} = \frac{3}{6} = .5$

(b)
$$\mu = 5$$

 $S.E = \sqrt{100} = .2$

(c)
$$\mu = 120$$

S.E. = $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{\epsilon}} \approx .3536$

- **7.25** Suppose a random sample of n = 25 observations is selected from a population that is normally distributed with mean equal to 106 and standard deviation equal to 12.
- **a.** Give the mean and the standard deviation of the sampling distribution of the sample mean \bar{x} .
- **b.** Find the probability that \bar{x} exceeds 110.
- c. Find the probability that the sample mean deviates from the population mean $\mu = 106$ by no more than 4.

(a) MEAN FOR
$$\overline{X}$$
 = MEAN FOR X = μ = 106
STANDARD DEN FOR \overline{X} = STANDARD EIGER S.E. = $\frac{G}{\sqrt{25}}$: $\frac{12}{\sqrt{25}}$: $\frac{2.4}{\sqrt{25}}$
(b) FIND $P(\overline{X} \ge 110)$ $Z = \frac{\overline{X} - \mu}{S.E.} = \frac{\overline{X} - \mu}{\sqrt{25}} = \frac{\overline{X} - 106}{2.4}$

$$= 9/2 = \frac{110 - 106}{2.4} = 9/2 = 1.67 = 1 - 9/2 = 1.67$$

= 1 - .9525 = .0475

| (c) FINO
$$P(110-4 \le x \le 110+4)$$
 $P(106 \le x \le 114)$
 $P(\frac{106-110}{2.4} \le z \le \frac{114-110}{2.4})$
 $P(-1.67 \le z \le 1.67) : 1-2(.0475)$

= .905

The Central Limit Theorem can be restated to apply to the **sum of the sample measurements** Σx_i , which, as *n* becomes large, also has an approximately normal distribution with mean $n\mu$ and standard deviation $\sigma \sqrt{n}$.

n.v.
$$\sum_{i} x_{i} = n \overline{X}$$
 $\left(\overline{X} = \frac{1}{n} \sum_{i} x_{i} \right)$

MEAN É	S.E.	Fal	£ x;	ARE	n ×	MEAN & S.E.	For X
--------	------	-----	------	-----	-----	-------------	-------

Poloralia	SAMPLE MEAN X	SVM OF MEASUREMENTS EX;
mean m	MGAN M	MEAN NM
s.D. G	S.E. Th	$rac{*n}{\sqrt{n}}$ S.E. $n \frac{\sigma}{\sqrt{n}} = \sqrt{n} \sigma$

Suppose there is an apple orchard and let x be the weight a randomly selected apple. Suppose that mean weight of all apples in the orchard is 360g, and the standard deviation is 25g. Find the probability that a sample of 100 apples has a total weight less than 35600g?

FIND II
$$2.x_{1} = 35,600$$
)

WITH MEAN = $n \mu = 100 \times 360 = 36000$
 $S.E. = \sqrt{n}G = \sqrt{100} \times 25 = 250$
 $Z = \frac{2.x_{1} - n\mu}{\sqrt{n}G}$
 $Z = \frac{35,600 - 36,000}{250}$
 $Z = \frac{35,600 - 36,000}{250}$
 $Z = \frac{35,600 - 36,000}{250}$
 $Z = \frac{35,600 - 36,000}{250}$

Note: IN order to APRY THE CENTRAL LUM THEOREM

ONE OF TWO CONDITIONS MUST BE MET:

(1) PORMATION IS NORMALLY DISTRIBUTED, OR

(2) SAMPLE SIZE IS LARGE ENCUCH,

i.e. $n \ge 30$

THE SAMPLING DISTRIBUTION OF THE SAMPLE MEAN, \bar{x}

• If a random sample of n measurements is selected from a population with mean μ and standard deviation σ , the sampling distribution of the sample mean \bar{x} will have mean μ and standard deviation*

$$\frac{\sigma}{\sqrt{n}}$$

- If the population has a *normal* distribution, the sampling distribution of \bar{x} will be *exactly* normally distributed, *regardless of the sample size*, n.
- If the population distribution is *nonnormal*, the sampling distribution of \bar{x} will be *approximately* normally distributed for large samples (by the Central Limit Theorem). Conservatively, we require $n \ge 30$.