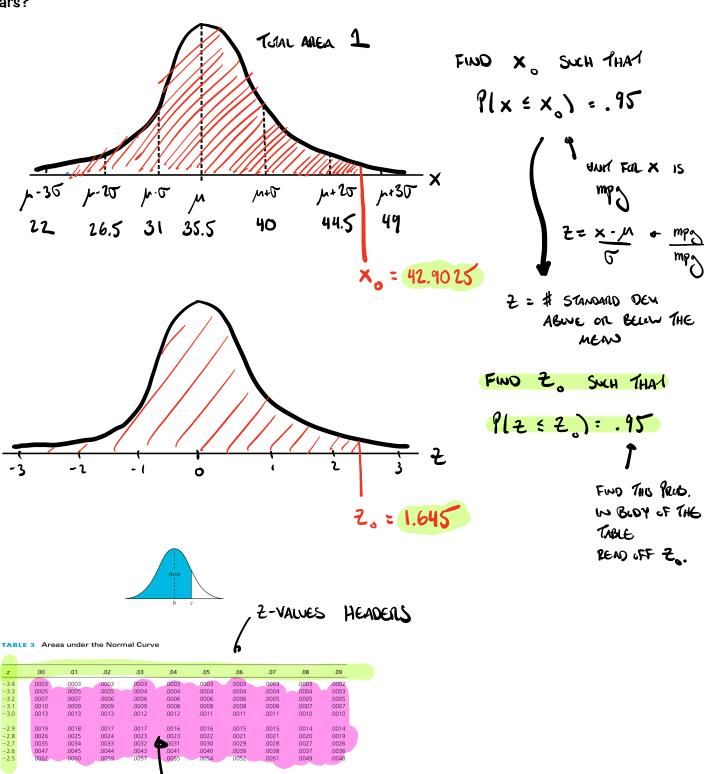

Example. Studies show that gasoline efficiently x for compact cars is normally distributed with mean 35.5 mpg and a standard deviation 4.5 mpg.

l. What percentage of compact cars get 40 mpg or more?

 $2. \, \text{Find the percent of compact cars with gas mileage above 50 mpg.}$


$$P(x \ge 50) \xrightarrow{Slandardiz} P(z \ge \frac{50 - 35.5}{4.5})$$

$$= P(z \ge 3.22) = 1 - P(z \le 3.22)$$

$$= 1 - .9994 = .0006 \longrightarrow 0.06\%$$

	.00	.01	.07_							
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	. <mark>999</mark> 7	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Still assume that gas efficiency x for compact cars is normally distributed with mean 35.5 and standard deviation 4.5. What gas mileage must a compact car get in order to get better gas mileage than 95% of compact cars?

Prubabulies in Boy

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5 871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

.95 is exactly in between 2=1.64 4 2:1.65

$$1.645 = \frac{X - 35.5}{4.5}$$

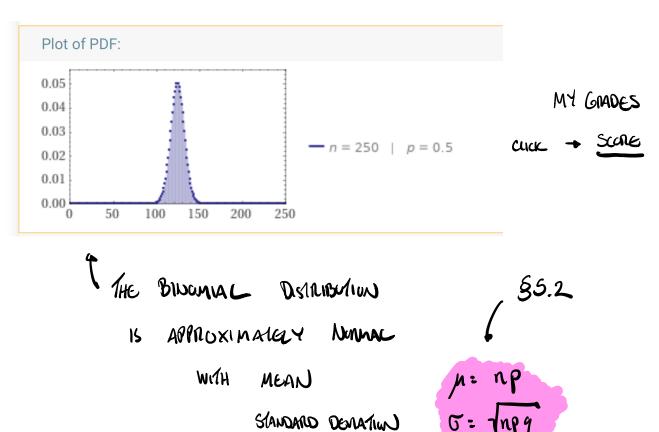
SAT scores are normally distributed with mean 580 and standard deviation 50. How high of a score must you get to be in the 99th percentile of SAT scores?

SAID TO BE IN THE NIH PERCENTILE NUMBER X 15 Ė P(x : x) = N% P(x = x0) = 100 N' PERCENTILE. 500 [xo, 00) CUT OFF FOR 99th PERCENTICE SUCH THAT PLX = x.) = . 99 SUCH THAT PLZ & Z) = . 99 GIVEN PROBABILIT (FIND IN BODY OF TABLE) (LOOK AT COURS & Z-Scare EWD . 00 ١ن. .ળ .03 .9<mark>.3</mark>8 .9834 .9772 .9783 .9793 .9798 .9817 2.0 .9778 .9803 .9808 .9812 2.1 .9821 .9830 .9838 9842 .9846 .9850 .9854 .9857 .9826 .9871 2.2 .9861 .9864 .9868 9875 9878 .9881 .9884 .9887 .9890 YRUBAOB! 2.3 0006 .9901 .9906 .9909 .9911 .9913 .9916 .9920 2.4 .9918 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 **1.33**.9940 2.5 .9938 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 2.6 .9953 .9955 .9956 .9957 .9959 .9964 .9960 .9961 .9962 .9963 2.7 .9965 .9967 .9968 .9969 .9970 .9974 .9966 .9971 .9972 .9973 2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

P(2 € 2.33) ≈ .99

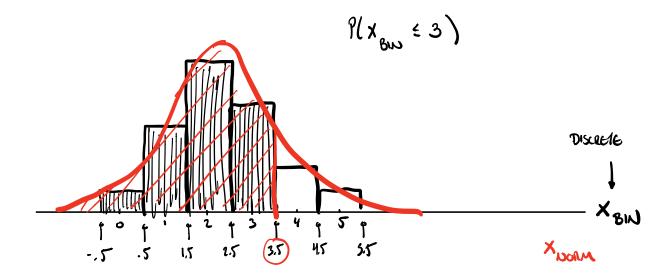
36.4 THE NORMAL ADDROXIMATION TO THE BIDOMIAL DISTRIBUTION

LET X BE A BINCHIAZ PANDOM VARIABLE WITH IT THUS, PROBABILITY OF SUCCESS & ON EACH TRIAL (NDEPENDENT, IDENTICAL) PROBABILITY OF FAILURE 9 = 1-p.


X = # Sucesses IN IL THILS.

Surfuse You FUP A COW N=25 THES. FIND THE PLUB OF OBSERVING NO HORE THAN 8 HEADS. P(x = 8) = P(x=0) + P(x=1) + P(x=2) + ... + P(x=8) Le use table ~ .054

n = 25


							p							
k	.01	.05	.10	.20	.30	.40	.50	.60	.70	.80	.90	.95	.99	k
0	.778	.277	.072	.004	.000	.000	.000	.000	.000	.000	.000	.000	.000	0
1	.974	.642	.271	.027	.002	.000	.000	.000	.000	.000	.000	.000	.000	1
2	.998	.873	.537	.098	.009	.000	.000	.000	.000	.000	.000	.000	.000	2
3	1.000	.966	.764	.234	.033	.002	.000	.000	.000	.000	.000	.000	.000	3
4	1.000	.993	.902	.421	.090	.009	.000	.000	.000	.000	.000	.000	.000	4
5	1.000	.999	.967	.617	.193	.029	.002	.000	.000	.000	.000	.000	.000	5
6	1.000	1.000	.991	.780	.341	.074	.007	.000	.000	.000	.000	.000	.000	6
7	1.000	1.000	.998	.891	.512	.154	822	.001	.000	.000	.000	.000	.000	7
8	1.000	1.000	1.000	.953	.677	.274	.054	.004	.000	.000	.000	.000	.000	8
9	1.000	1.000	1.000	.983	.811	.425	.115	.013	.000	.000	.000	.000	.000	9
10	1.000	1.000	1.000	.994	.902	.586	.212	.034	.002	.000	.000	.000	.000	10
11	1.000	1.000	1.000	.998	.956	.732	.345	.078	.006	.000	.000	.000	.000	11
12	1.000	1.000	1.000	1.000	.983	.846	.500	.154	.017	.000	.000	.000	.000	12
13	1.000	1.000	1.000	1.000	.994	.922	.655	.268	.044	.002	.000	.000	.000	13
14	1.000	1.000	1.000	1.000	.998	.966	.788	.414	.098	.006	.000	.000	.000	14
15	1.000	1.000	1.000	1.000	1.000	.987	.885	.575	.189	.017	.000	.000	.000	15
16	1.000	1.000	1.000	1.000	1.000	.996	.946	.726	.323	.047	.000	.000	.000	16
17	1.000	1.000	1.000	1.000	1.000	.999	.978	.846	.488	.109	.002	.000	.000	17
18	1.000	1.000	1.000	1.000	1.000	1.000	.993	.926	.659	.220	.009	.000	.000	18
19	1.000	1.000	1.000	1.000	1.000	1.000	.998	.971	.807	.383	.033	.001	.000	19
20	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.991	.910	.579	.098	.007	.000	20
21	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.998	.967	.766	.236	.034	.000	21
22	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.991	.902	.463	.127	.002	22
23	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.998	.973	.729	.358	.026	23
24	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.996	.928	.723	.222	24
25	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25

Survise You FLIP A COW N=250 THES.
FIND THE PLUB OF OBSERVING NO MORE THAN 110 HEADS?

$$||X_{\text{DND}}|| \leq ||X_{\text{DND}}|| \leq ||X_$$

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0 <mark>00</mark> 3	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0 <mark>00</mark> 4	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0 <mark>00</mark> 6	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0 <mark>00</mark> 9	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0 <mark>01</mark> 2	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0 <mark>02</mark> 3	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0 <mark>03</mark> 2	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0 <mark>04</mark> 3	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0 <mark>05</mark> 7	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0 <mark>09</mark> 9	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0 <mark>12</mark> 9	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0 <mark>16</mark> 6	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.06 <mark>3</mark> 0	.0618	.0606	.0594	.0582	.0571	.0559

EDGES OF NECLANGLE OCCUP AN INTEGERS : 5

Suppose 15% of the apples in a particular orchard are infected with mold. In a random sample of 50 apples, find the probability that more than 10 of them are infected.

LET X = If INFECTED APPLES IN A SAMPLE OF SIZE N=50. Plinfedeo >= p = .15 Plok)= g = .85 FIND P(x > 10) 23456785611713141514 μ= np = (50)(.15) = 7.5 σ= √npq = √(50)(.15)(.65) = BLUE MEA ~ NED ANEA

$$\mu = np = (50)(.15) = 7.5$$
 $\sigma = \sqrt{npq} = \sqrt{(50)(.15)(.65)} = Blue MEA \approx

Discrete Colambias$

$$\Re \left\{ \frac{2}{5} \ge \frac{10.5 - 10}{5} \right\}$$

= 1 - P(z = 1.19) = 1 - .8830 = .1170

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5 <mark>35</mark> 9
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5 <mark>75</mark> 3
0.2	.5793	.5832	.5 871	.5910	.5948	.5987	.6026	.6064	.6103	.6 <mark>14</mark> 1
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6 <mark>51</mark> 7
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6 <mark>87</mark> 9
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8 <mark>13</mark> 3
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8 <mark>38</mark> 9
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9 <mark>17</mark> 7
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9 <mark>31</mark> 9