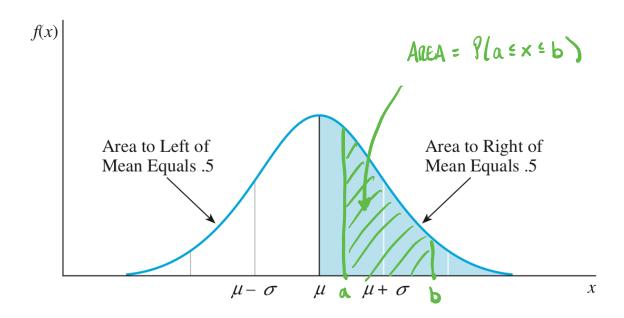


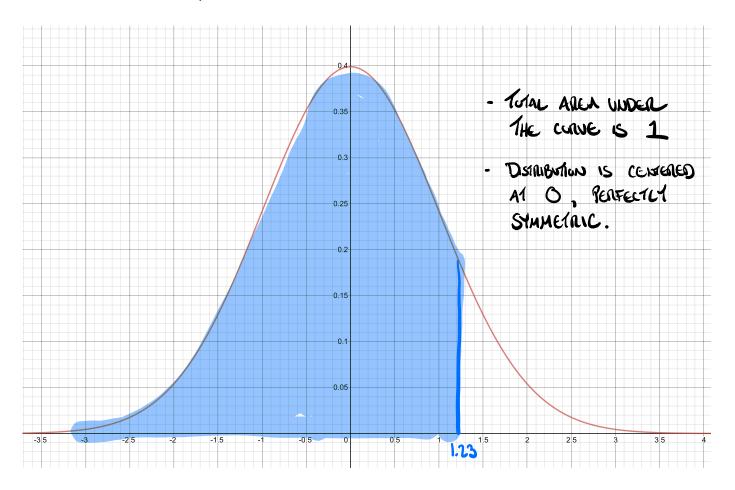
EXAM 1 Q15



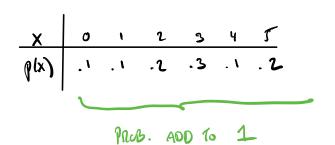
P(Enc)=P(E)=P(C)

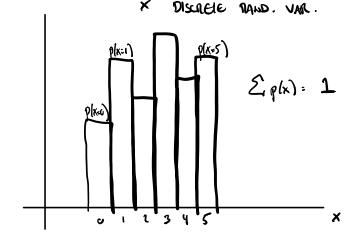
Normal Musability Diskibution

\$6.3 TABULATED ANEAS OF THE NORMAL PREB. DISTR.


ALL NORMAL DISTRIBUTIONS (BELL CUIVES) HAVE THE EXACT SAME SHAPE EXCEPT FOR . HURIZONTAL / VERTICAL STRETCHING & STRUKING CONTROLLED BY STAND. DEV. O .) SHIFTING LEFT/MIGHT CONTROLLED BY MEAN M.

SPECIAL CASE:


STANDARD WILMAL DISTRIBUTION.


RANDON VARIABLE X HAS LOUME PROB. DISTR. WITH M=0, G=1

FIND
$$P(x \le 0)$$
. \leftarrow Area under curve, LEF1 of 0 .

: TOTAL ANEA UNDER CURVE MUST BE 1.

Z	.00	.01	.02	.03	.04	.05
0.0	.5000	.5040	.5080	.5120	.5160	.5199
0.1	.5398	.5438	.5478	.5517	.5557	.5596
0.2	.5793	.5832	.5 871	.5910	.5948	.5987
0.3	.6179	.6217	.6255	. <mark>629</mark> 3	.6331	.6368
0.4	.6554	.6591	.6628	.666 <mark>4</mark>	.6700	.6736
0.5	.6915	.6950	.6985	.7019	.7054	.7088
0.6	.7257	.7291	.7324	. <mark>735</mark> 7	.7389	.7422
0.7	.7580	.7611	.7642	. <mark>767</mark> 3	.7704	.7734
8.0	.7881	.7910	.7939	. <mark>796</mark> 7	.7995	.8023
0.9	.8159	.8186	.8212	. <mark>823</mark> 8	.8264	.8289
1.0	.8413	.8438	.8461	.848 <mark>5</mark>	.8508	.8531
1.1	.8643	.8665	.8686	. <mark>870</mark> 8	.8729	.8749
1.2	.8849	.8869	.8888	.8907	.8925	.8944
1.3	.9032	.9049	.9066	.9082	.9099	.9115
1.4	.9192	.9207	.9222	.9236	.9251	.9265

$$P(x \le 1.23) = .8907$$
 1.23
 1.23
 $\frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$ (caccus)

FACION HAS MACHINE THAT FILLS BUTTLES WITH MEDICINE.

MACHINE IS SOT TO FILL EACH BUTTLE WITH 35 mL

UF MEDICINE. LET X = THE NUMBER OF ML

ABOVE (+) OR BELOW (-) 35 IN A RANDOMLY

SELECTED BUTTLE.

eg. A BUTLE FILLED TO 36.23 mL THEN X = 36.23 - 35 = 1.23

> A BUTLE FILLED TO 33.87 mL THEN X = 33.87 - 35 = -1.13

FIND THE PROB. OF A BOTTLE COOPAINING LESS THAN 36.23 mL. $\Rightarrow P(x \leq 1.23) = .6907.$

FIND THE PROB. OF A BOTTLE CONSTAINING MURLE THAN 36.23 mL.

=> $P(x > 1.23) = 1 - P(x \le 1.23) = 1 - .8907$ = 1093

ex. FIND PROB (-.53 & x < .48)

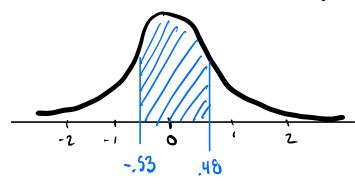
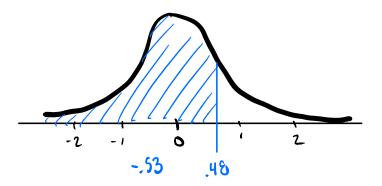



TABLE OULY PROVIDES PROB. PLX = #

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5 871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.161
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.186
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.245
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.277
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	2220	2102	2156	212
	.3446	.3409		.3336			.3228	.3192	.3156	.312
-0.3			.3745		.3669	.3632	.3594	.3557	.3520	.348
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.385
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.424
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.464

$$P(-.53 \le x \le .48) = P(x \le .48) - P(x \le -.53)$$

$$= .6844 - .2981$$

$$= (.3863)$$

More GENERALLY,

GIVEN AND NORMALLY DISTRIBUTED PRODUCT VARIABLE X WITH MEAN IN & STANDARD DEVILUTION &,

THE R.V. IS STANDARDIZED BY EXPRESSING ITS VALUE AS THE NUMBER OF STANDARD DEVATIONS & IT US TO THE LEFT (-) OR RIGHT (+)

OF THE MEAN. THE STANDARDIZED R.V. IS DENCED Z.

e.g. x is boun. Distr. with $\mu = 120$, G = 25. Standardize the value x = 170.

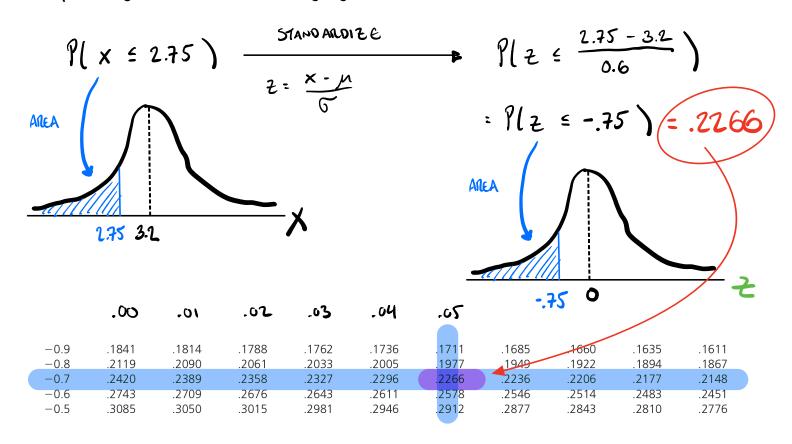
X=170= X is 50 more than 120 => 2(25) more than 120 25 more than $\mu \rightarrow Z=2$

 $X=105 \Rightarrow X$ is 15 Less THAN 120 $\frac{3}{5}(25)$ Less THAN 120 $\frac{3}{5}G$ Less THAN $\mu \rightarrow Z=-\frac{3}{5}$

Z is the standard Normany Distributed R.V. $\mu=0$, G=1.

THE VALUE OF Z THAT CORRESPONDS TO A VALUE FOR A LARBYMARY) WORMAND DISTR OILY. X IS CALLED THE Z-Score FOR THAT VALUE.

- e.g. X is worm. Distr. RV. WITH


 MEAN $\mu = 83$.

 STAND. DEN. G = 4.
 - (a) FIND Z-Scale For X=88.
 - (b) FIND Z-Scale For X= 75.

(a)
$$z = \frac{x-y}{5} = \frac{\epsilon 8 - \epsilon 3}{4} = \frac{5}{4} = 1.25$$

(b)
$$z = \frac{x - y}{6} = \frac{75 - 83}{4} = \frac{-8}{4}$$

Suppose the birth weight x of wild boars is normally distributed with mean 3.2 lbs and standard deviation 0.6 lbs. Find the probability that a wild boar is born weighing less than 2.75 lbs.

Example. The monthly sales at a local car dealership is a random variable x. Assume that x is normally distributed with mean \$620,000 and standard deviation \$250,000.

Find the probability that the car dealership makes more than \$1,000,000 in a month.

FIND
$$P(x \ge 1,000,000)$$

$$2 = \frac{x - 1}{5}$$
AREA
$$P(z \ge \frac{1,000,000}{250,000})$$

$$= P(z \ge 1.52)$$
AREA

6.26 Breathing Rates The number of times *x* an adult human breathes per minute when at rest has a probability distribution that is approximately normal, with the mean equal to 16 and the standard deviation equal to 4. If a person is selected at random and the number *x* of breaths per minute while at rest is recorded, what is the probability that *x* will exceed 22?

$$P(x = 22) = P(z = \frac{2(2-16)}{9})$$

$$= P(z = 1.50)$$

$$= 1 - P(z = 1.50)$$

$$= 1 - .9332 = .0668$$

	00.									
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767