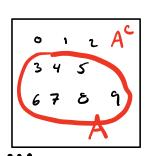
- **5.2** Consider a binomial random variable with n = 9and p = .3. Let x be the number of successes in the sample.
- **a.** Find the probability that *x* is exactly 2.
- **b.** Find the probability that x is less than 2.
- c. Find P(x > 2).
- **d.** Find $P(2 \le x \le 4)$.


(a)
$$P(x=2) = C_2^9 (.3)^2 (.7)^7$$

=
$$P(x=0) + P(x=1)$$

$$= C_0^9 (.3)^9 (.7)^9 + C_0^9 (.3)^9 (.7)^9$$

- = .0404 + .1556
- = .1960

$$P(x>2) = P(x=2)^{2} = 1 - P(x=2)$$

$$P(x > 2) = P(x \le 2)^{2} = 1 - P(x \le 2)$$

$$= 1 - \left[P(x = 0) + P(x = 1) + P(x = 2) \right]$$

$$= 1 - \left[.1960 + .2666 \right] = 1 - .4626$$

(d)
$$P(z \le x \le 4) = P(x = 2) + P(x = 3) + P(x = 4) = ...$$

 $P(x = K) = C_{K}^{9} (.3)^{K} (.7)^{9-K}$

5.9 Let x be a binomial random variable with n = 10and p = .4. Find these values:

a.
$$P(x = 4)$$

b.
$$P(x \ge 4)$$
 c. $P(x > 4)$

c.
$$P(x > 4)$$

d.
$$P(x \le 4)$$

e.
$$\mu = np$$

d.
$$P(x \le 4)$$
 e. $\mu = np$ **f.** $\sigma = \sqrt{npq}$

5.34 Man's Best Friend According to the Humane Society of the United States, there are approximately 77.5 million owned dogs in the United States, and approximately 40% of all U.S. households own at least one dog.⁴ Suppose that the 40% figure is correct and that 15 households are randomly selected for a pet ownership survey.

- **a.** What is the probability that exactly eight of the households have at least one dog?
- **b.** What is the probability that at most four of the households have at least one dog?
- c. What is the probability that more than 10 households have at least one dog?

ASSUME BIJOHAL WHEN

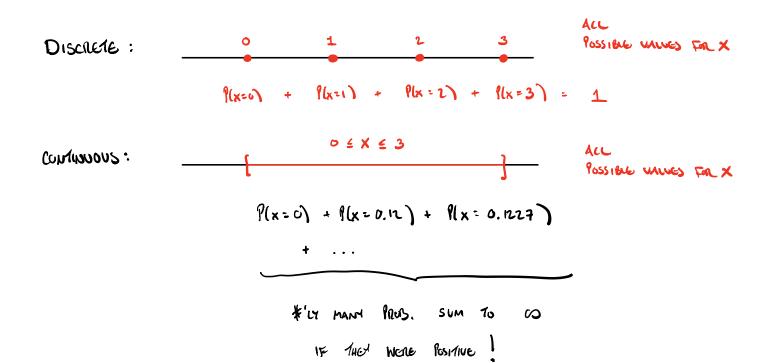
Brown Exp. n=15 p=.4

(a)
$$P(x=8) = C_8^{15} (.4)^8 (.6)^7$$

(b) P(X & 4) - TABLE I W APPENDIX

							р							
k	.01	.05	.10	.20	.30	.40	.50	.60	.70	.80	.90	.95	.99	k
0	.860	.463	.206	.035	.005	.000	.000	.000	.000	.000	.000	.000	.000	0
1	.990	.829	.549	.167	.035	.005	.000	.000	.000	.000	.000	.000	.000	1
2	1.000	.964	.816	.398	.127	.027	.004	.000	.000	.000	.000	.000	.000	2
3	1.000	.995	.944	.648	.297	.05	.018	.002	.000	.000	.000	.000	.000	3
4	1.000	.999	.987	.836	.515	.217	.059	.009	.001	.000	.000	.000	.000	4
5	1.000	1.000	.998	.939	.722	.105	.151	.034	.004	.000	.000	.000	.000	5
6	1.000	1.000	1.000	.982	.869	% .610	.304	.095	.015	.001	.000	.000	.000	6
7	1.000	1.000	1.000	.996	.950	* .787	.500	.213	.050	.004	.000	.000	.000	7
8	1.000	1.000	1.000	.999	.985	.905	.696	.390	.131	.018	.000	.000	.000	8
9	1.000	1.000	1.000	1.000	.996	966	.849	.597	.278	.061	.002	.000	.000	9
10	1.000	1.000	1.000	1.000	.999	.991	.941	.783	.485	.164	.013	.001	.000	10
11	1.000	1.000	1.000	1.000	1.000	.590	.982	.909	.703	.352	.056	.005	.000	11
12	1.000	1.000	1.000	1.000	1.000	1.000	.996	.973	.873	.602	.184	.036	.000	12
13	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.995	.965	.833	.451	.171	.010	13
14	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.995	.965	.794	.537	.140	14
15	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	15

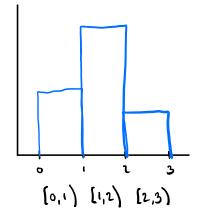
$$P(x = 4) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4)$$
= .217

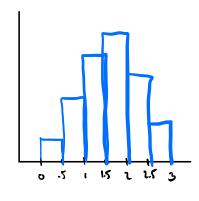

(c)
$$P(x>10) = 1 - P(x \le 10)$$

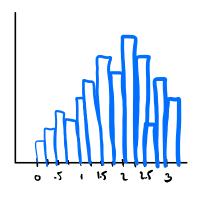
= 1 - .991 = 0.009

$$P(x=7) = \begin{cases} C_{7}^{15} (.4)^{7} (.6)^{6} = .1771 \\ P(x=7) - P(x=6) = .787 - .610 = .177 \end{cases}$$

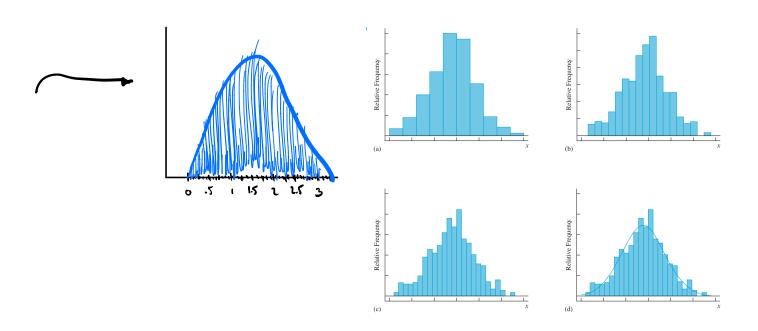
36.1 PROBABILITY DISTRIBUTIONS FOR COMMUNICUS

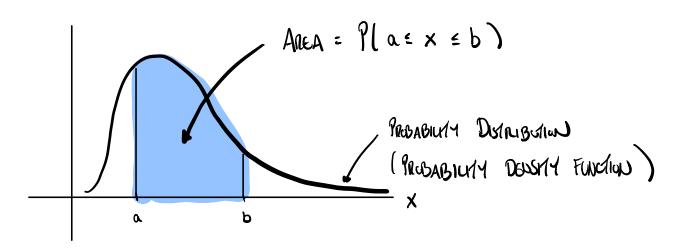

RANDON VARIABLES


Continuous random variables take on infinitely many (uncountable many) values. So we can't assign positive probabilities p(x) for every possible value of the random variable x, because the probabilities would no longer sum to 1.



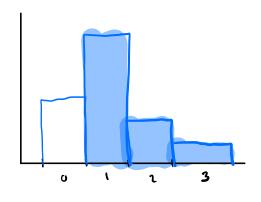
NEW APPROACH:


MAKE A HISTOGRAM FOR CONTINUOUS PANDOM VARIABLE X ...

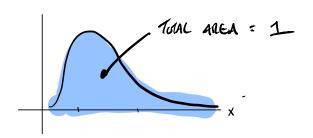


... WITH MUTE & MOTE (NATHUMER & NATHUMER) CLASSES.

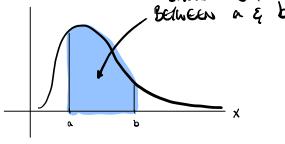
IN GENERAL, AS CLASSES GET WARRIUMEN,
HISTOGRAM/ GRAPH GETS SHOOTHER

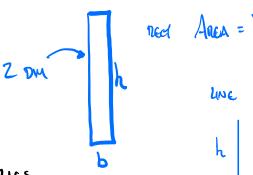

THE PROBABILITY DISTRIBUTION IS CREATED BY DISTRIBUTING I UNIT

DENSITY OF PROBABILITY VARIES WITH X.

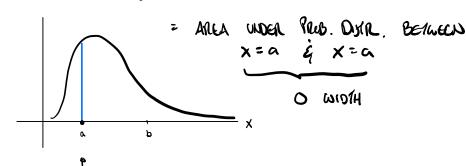

THIS MAN BE DESCRIBED AS A PROBABILITY DENSITY FUNCTION. f(x)

P(x=0)+P(x=1) + ... + P(x=n) = 1


SUM OF PRUS IN THAT



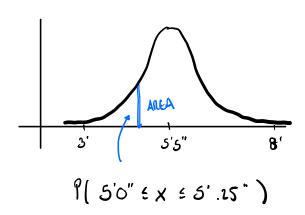
·) AREA WOER PROBABILITY DISTRIBUTION = 1


or P(a = x = b) = AREA UNDER PROB DISTRIBUTION. Between a & b.

& WIDTH

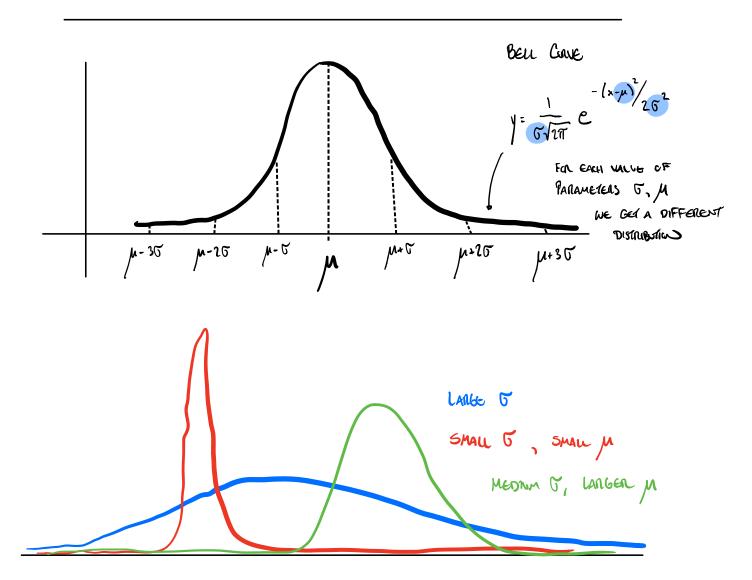
Note: For Continuous Random Variables

0= 1.21716320018...

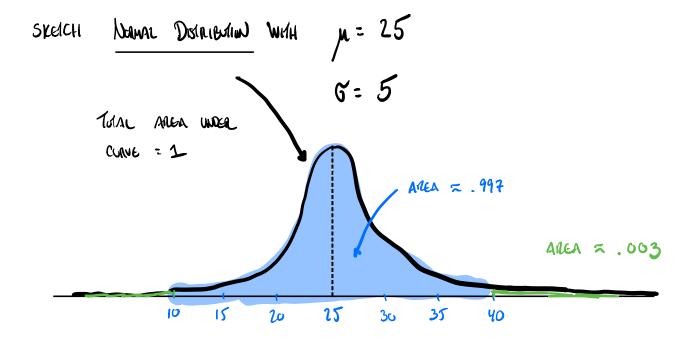

O AREA UNDER CAME ABOVE POINT X = a

(ii)
$$I(x \le a) = I(x \cdot a) + I(x = a)$$

$$I(x \ge a) = I(x \cdot a) + I(x = a)$$


EXP: SELECT A NAWDON HUMON BEING CONTINUOUS NAWDOM VANIABLE X = HEIGHT.

No randing


36.2 THE NORMAL PROBABILITY DISTRIBUTION

RECALL : EMPERICAL RULE,

ALMOST AU OBSERVATIONS LIE WITHIN 3 STANDARD DENLATIONS OF THE MEAN (99.7%)

Pl p-35 = x = p+35) ~ .997

