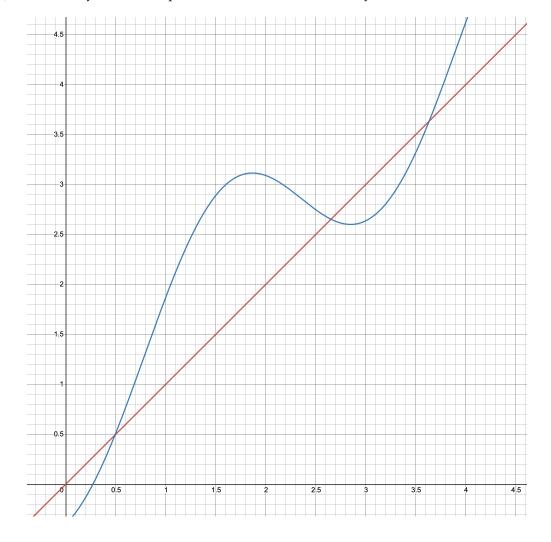
Exam 2 Practice Questions

Exam 2 will be given on Thursday 11/10. It will cover sections §3.1-6 in the text. Please bring a calculator to the exam.

1. Consider the iterative equation

$$x_{n+1} = 5x_n^3$$
.

- (a) Compute x_1, x_2 , and x_3 in terms of x_0 .
- (b) Give an exact solution for x_n .
- (c) Use your answer to part (b) to find the basin of attraction for the stable fixed point 0. That is, the largest open interval I containing 0 such that if x_0 is in I then $\lim_{n\to\infty} x_n = 0$.
- 2. The graphs of y = f(x) and y = x are shown below. Suppose the three intersections of the two graphs are (p_1, p_1) , (p_2, p_2) , and (p_3, p_3) , with $p_1 < p_2 < p_3$.
 - (a) Use cobwebbing to identify all (visible) fixed points and classify each one as either stable or unstable.
 - (b) Use cobwebbing to determine the basin of attraction of each (if any) stable fixed point.
 - (c) Which, if any, of the fixed points exhibit oscillation of nearby solutions?



Last edited 10/29/2022 adamski@fordham.edu

3. Let $\epsilon > 0$. If p is a fixed point of the iterative equation $x_{n+1} = f(x_n)$, and $0 < f'(x) \le 1/2$ for all x such that $|x - p| < \epsilon$, show that p is locally stable. That is, show that

if
$$|x_0 - p| < \epsilon$$
 then $\lim_{n \to \infty} |x_n - p| = 0$.

Note: I am asking you to provide a part of the proof of the Stability and Oscillation Theorem. Thus, you cannot use the theorem to prove the result. That is, you cannot simply say that the fixed point p is stable because |f'(p)| < 1.

4. Let p be the unique solution to the equation

$$e^{2x} = 4 - x^3.$$

Assuming x_0 is sufficiently close to p, use Newton's method of root-finding to give an iterative equation $x_{n+1} = f(x_n)$ such that x_n converges to p.

5. For

$$f(x) = 1 - 2 \left| x - \frac{1}{2} \right|,$$

 $p_1 = 2/33$ is one point of an *m*-cycle.

- (a) Find all other points of that cycle, and state the period of *p*.
- (b) Determine the stability of that cycle and justify your answer. and stability.
- 6. Consider the one-parameter family of functions

$$f_r(x) = rx(3 - x^2),$$

with r > 0.

- (a) Find the interval of stability for the fixed point 0.
- (b) Find the positive fixed point p_r and its interval of existence.
- (c) Find the interval of stability for p_r .
- 7. Use the graphs of f and its iterates f^2 and f^3 below to answer the following questions. Assume f(0) = 0. Explain your answers.
 - (a) How many fixed points does *f* have?
 - (b) How many 2-cycles does f have?
 - (c) How many 3-cycles does *f* have?
 - (d) Let p be the largest fixed point. Do solutions oscillate locally around p?

