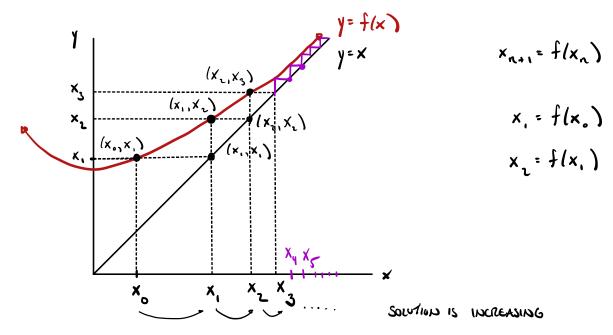
83.3 COBWERBUG, DERIVATIVES, & DYNAMICS

CORDEBBING IS A GIAPHICAL METHOD FOR GUICKLY
STUDYING THE DINAMICS OF A SYSTEM $X_{n+1} = f(x_n)$.

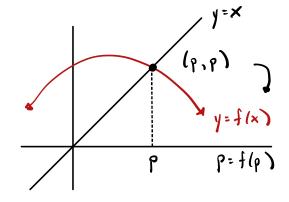
THE GRAPH y = f(x) can help us determine the Nature of a solution (dynamics)



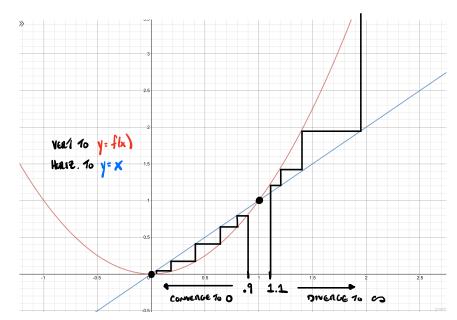
REMEMBER TO MOVE VERTICALLY TO BINGOLDAL

FIXED POINTS OF $x_{n-1} = f(x_n)$ ARE x-coord of intersections of y = f(x) & y = x.

FIXED POINT EQ.

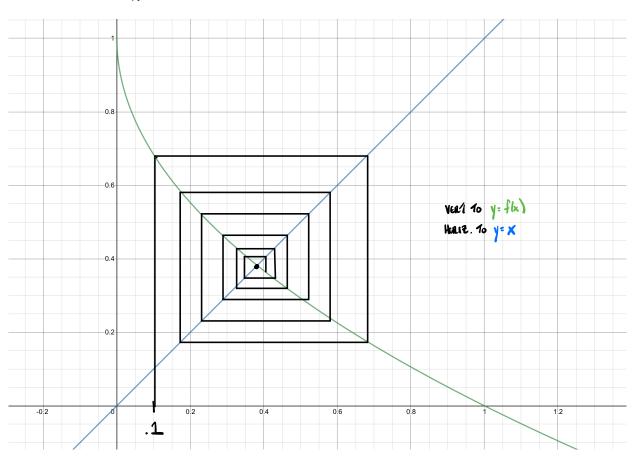


- (a) stanting at 0.9
- (b) STANTING AT 1.1.



Fixed fluids: Intersections of yeffx), yex

ex. Draw a Cobwoo Gruph For $X_{n+1} = 1 - \sqrt{X_n}$ Stanting M 0.1



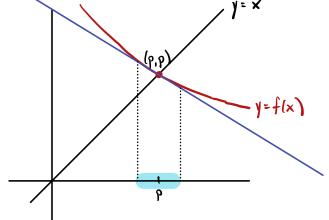
COBWEBS ALLOW US TO QUICKLY FIND FIXED POINTS & CLASSIFY THEM AS CHIER STABLE OR UPSTABLE.

Cobweb Dynamics

For the equation $x_{n+1} = f(x_n)$, any point p where the graphs of y = f(x) and y = x intersect is a fixed point. If all cobwebs starting close to p converge to (p, p), then p is stable. If a cobweb diverges from (p, p), then p is unstable. And a spiral cobweb around (p, p) indicates that solutions oscillate around p.

DERIVATIVES (& FIXED POINTS)

Now suppose
$$p$$
 is a fixed point of $f(x)$ ($p = f(p)$) $f(p) = f(p)$ is differentiable at $p = f'(p) = f(p)$.



DIFFERENMENTE AT P:

$$y = f(x) \approx \frac{f(p) + f'(p)(x-p)}{\text{the Anisalim of } f}$$
 when x is close to p

STABILITY & OSCILLATION THEOREM

NOW suffice p is a fixed point of $x_{n+1} = f(x_n)$, and f is continuous at p.

LOCALLY, ON A SUFFICIENTLY SMALL INTERIOR CENTERED AT ρ , $f(x) \approx f'(\rho) \times + \rho(1-f(\rho))$

IS APPROXIMATELY LINEAR WITH SLOPE & 1/P)

IF
$$|f'|p\rangle| > 1$$
 THEN P IS UNSTABLE

IF $|f'|p\rangle| < 1$ THEN P IS STABLE

SOLUTIONS OSCULLATE IF & OMEY IF $f'|p\rangle < 0$.

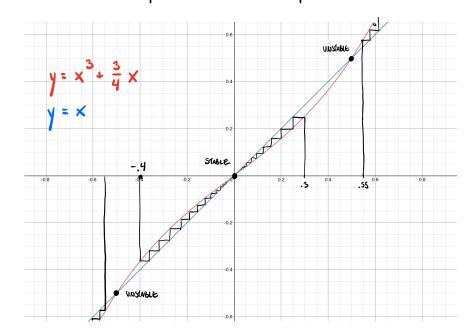
ex. Determine Stability of ALL Fixed Powers of $X_{n+1} = X_n + \frac{3}{4} X_n$

FIND FIXED POINTS: FIXED POINT EQUATIONS
$$p = f(p)$$
 (Solve)
$$p = p^{3} + \frac{3}{4}p \implies 0 = p^{3} - \frac{1}{4}p = p(p^{2} - \frac{1}{4}) = p(p + \frac{1}{2})(p - \frac{1}{2})$$

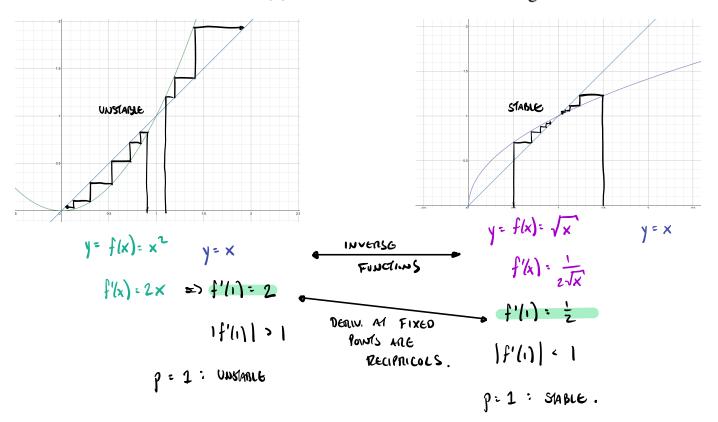
FIXED PONTS: 0, ± 2.

$$f(x) = x^3 + \frac{3}{4}x \implies f'(x) = 3x^2 + \frac{3}{4}$$

Fixed Points p	f'lp)	CI & SOL
٥	3/4	
1/2	%	f'(p) > => unstable
-1/2	6/4	f'(p) > = > UNSTABLE



31. The point p = 1 is a fixed point of both $f(x) = x^2$ and its *inverse* $f^{-1}(x) = \sqrt{x}$ (for $x \ge 0$). (a) Use cobweb graphs to show that p is stable under one of these functions and unstable under the other. (b) Confirm these observations using the derivative.



INVERSE FUNCTION THECREM:
$$(f'')'(p) = \frac{1}{f'(f''(p))}$$
 FOR ALL P

ASSUMING
$$f$$
 is 1-70-1. $f(p)=p \iff f^{-1}(p)=p$.

$$(f^{-1})'(p)=\frac{1}{f'(p)}$$

ex. DETERMINE THE STABILITY OF THE FIXED POINTS OF

(a) $f(x) = \frac{1}{e^x}$ (b) $g(x) = \ln(\frac{1}{x})$

(NOTE THAT IT IS DIFFICULT TO DETERMINE THE FIXED POINTS ALGEBRAICALLY! WE WILL LEARN A VERY GOOD WAY TO APPROXIMATE THE FIXED POINTS SOON!)

PROOF OF STATSILLY & OSCILLATION THAT.

Stability: Two cases

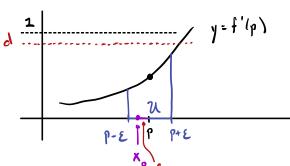
(i) $F \left| f'(p) \right| < 1$.

IF |f'(p)| > 1 THEN P IS UNSTABLE IF |f'(p)| < 1 THEN P IS STABLE SOLUTIONS OSCULATE IF f'(p) < 0.

ASSUMUS f' is continuous At p,

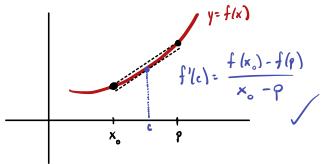
THEN 3 (THERE EXISTS) OPEN WIENVAL $U = l_p - E, p + E)$, E > 0,

AND O'd' I SUCH THAT I'X) & d VX & U.



le x, e U.

THEN MEAN VALUE THEMEM =>] C BETWEEN P & X. SUCH THAT



SINCE CE U, |x, -p| < d |x, -p| < 1x, -p|, d 1

:. x, e U

SAME ARGUMENT, WITH X_{\bullet} REPLACED BY X_{\bullet} , SHOWS $\begin{aligned}
|X_{2} - p| &\leq d |X_{\bullet} - p| &\leq d (d |X_{\bullet} - p|) &= d^{2} |X_{\bullet} - p| \\
&\vdots \\
|X_{n} - p| &\leq d^{n} |X_{\bullet} - p| &\leq |X_{n} - p| &= |X_{n} - p| &= |X_{n} - p| &= 0
\end{aligned}$ $=> 0 \leq \lim_{n \to \infty} |X_{n} - p| \leq \lim_{n \to \infty} d^{n} |X_{n} - p| = |X_{n} - p| &= 0$

.. Xn convences to P. \

Then
$$\exists$$
 ofen interior $\mathcal{U} = \{\rho - \mathcal{E}, \rho + \mathcal{E}\}$, $\mathcal{E} > 0$, and \exists $d > 1$ such that $|f'(x)| \ge d$ $\forall x \in \mathcal{U}$.

Let $x_o \in \mathcal{U}$

Then $MVT = \int \{lx_o\} - f(\rho) = f'(c)\{x_o - \rho\}$ For sume c between $x_o \notin P$
 $x_i - \rho = f'(c)\{x_o - \rho\}$
 $c \in \mathcal{U} = \int f'(c) \ge d > 1$
 $= \int \{x_o - \rho\} \ge d \} x_o - \rho$
 $f(x_o) = \int f'(c) \ge d > 1$
 $f(x_o) = \int f'(c) =$

() Saumion:

IF
$$f(p) > 0$$
 Then we choose $U = (p-\epsilon, p+\epsilon), \epsilon > 0$
 $SA f'(x) > 0$ $V \times \epsilon U$
 $SA f(x) > 0$ $V \times \epsilon U$
Then $f(x_0) - p = f'(c)(x_0 - p) = 0$ $f(x_0) - p < 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon), \epsilon > 0$
 $V = (p - \epsilon, p+\epsilon)$

PAS Xo.

IF
$$f'/p$$
 (0 Then We CHOUSE $U = (p-E, p+E)$, $E > 0$
 $S.1. f'/x$) (0 $V \times e U$
THEN $f(x_0) - p = f'(c)(x_0 - p) = 0$
 $V \times v = 0$