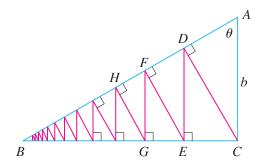
Written Homework


Put your solutions inside the envelope on my office door (JMH 418) anytime before $12 \mathrm{pm}$ Friday 12/16. At that time, solutions will be posted to

https://johnadamski.com

1. A right triangle ABC is given with $\angle A = \theta$ and $|\overline{AC}| = b$. The line segment \overline{CD} is perpendicular to \overline{AB} , the line segment \overline{DE} is perpendicular to \overline{BC} , and so on, as shown in the figure. Find the total length of all the perpendiculars

$$|\overline{CD}| + |\overline{DE}| + |\overline{EF}| + |\overline{FG}| + \dots$$

in terms of b and θ . Hint: Use similar triangles and trigonometry to form a geometric series.

2. For each of the following series, determine if the series converges absolutely, converges conditionally, or diverges. Justify your answers.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n n!}{5 \cdot 8 \cdot 11 \cdot \dots \cdot (3n+2)}$$

3. For each of the following power series, find the radius of convergence and the interval of convergence.

(a)
$$\sum_{n=2}^{\infty} \frac{(x+2)^n}{2^n \ln n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \sqrt{n}}$$

4. Suppose that the power series $\sum_{n=0}^{\infty} c_n x^n$ converges when x=-4 and diverges when x=6. Then which of the following series must converge?

(a)
$$\sum_{n=0}^{\infty} c_n$$

(c)
$$\sum_{n=0}^{\infty} c_n (-3)^n$$

(b)
$$\sum_{n=0}^{\infty} c_n 8^n$$

(d)
$$\sum_{n=0}^{\infty} (-1)^n c_n 9^n$$