Practice Problems for Final Exam

1. Evaluate each of the following integrals.

(a)
$$\int e^{2x} \sinh x \, dx$$

(b) $\int \frac{\tan^5(\ln x) \sec^7(\ln x)}{x} \, dx$
(c) $\int_3^{3\sqrt{2}} \frac{\sqrt{x^2 - 9}}{x^3} \, dx$
(d) $\int \frac{10}{(x - 1)(x^2 + 9)} \, dx$

- 2. Use Simpson's Rule with n=4 to approximate the area of the surface obtained by rotating the curve $y=1/x, 1 \le x \le 5$ around the x-axis. Leave your answer as a product/sum of terms.
- 3. Give parametric equations to describe the motion of a particle that moves in the xy-plane along the circle with center (4, -5) and radius 6 beginning at (-2, -5), traveling 1.5 times around the circle clockwise, and ending at (10, -5).
- 4. Let C be the curve given paramtrically by

$$x = t^3$$
, $y = \frac{3t^2}{2}$, $0 \le t \le \sqrt{3}$

- (a) Find the arclength of the curve C.
- (b) Give an equation for the line tangent to C at (1/8, 3/8).
- 5. An oil truck carries oil with a density of 55 lbs/ft³ in a horizontal cylindrical tank with a 10 ft diameter. Setup *but do not evaluate* a definite integral equal to the hydrostatic force exerted by the oil on one end of the tank when the tank is full.
- 6. Sketch and find the area of the region that lies inside both of the following polar curves.

$$r = 4\sin\theta$$
, $r = 2$

7. Determine whether each of the following is convergent or divergent. If it is convergent, find its sum. If it is diverent, explain why.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3^{n+2}}{2^{2n}}$$

(b)
$$\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$$

8. Determine whether each of the following is convergent or divergent and explain why.

(a)
$$\int_{1}^{\infty} \frac{1+x}{x^2 - e^{-x}} dx$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{n^2}\right)^{1/\sqrt{n}}$$

- 9. Consider the power series $\sum_{n=0}^{\infty} \frac{2^n}{\sqrt{n+3}} (x-3)^n.$
 - (a) Find the radius of convergence.
 - (b) Find the interval of convergence.