Exam 2

Answer all 6 questions for a total of 100 points. Write your solutions in the accompanying blue book, and put a box around your final answers. If you solve the problems out of order, please skip pages so that your solutions stay in order.

Good luck!

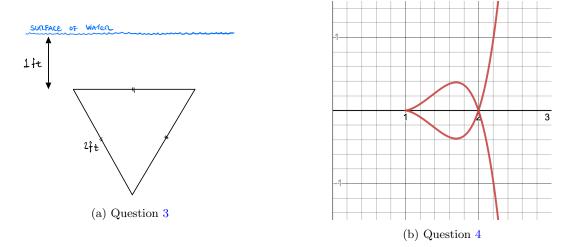


Figure 1: Questions 3 and 4 refer to the figures above.

1. (12 points) Find the arclength of the curve

$$y = \frac{1}{4}x^2 - \frac{1}{2}\ln x, \quad 1 \le x \le 2.$$

2. Consider the curve

$$y = \tan^{-1} x$$
, $0 < x < 1$.

Setup an integral for the area of each surface of revolution described below. Do not evaluate the integrals.

- (a) (10 points) The curve is rotated about the x-axis.
- (b) (10 points) The curve is rotated about the y-axis.
- 3. (16 points) A vertical plate in the shape of an equilateral triangle with side length 2 ft is submerged in water 1 ft below the surface as in figure 1a. Approximate the hydrostatic force against one side of the plate by a Riemann sum. Then express the force as an integral and evaluate it. Let δ equal the weight density of water per cubic ft, and leave your answer in terms of δ .
- 4. The x- and y-coordinates of a moving particle at time t are given by the parametric equations

$$\begin{cases} x = t^{2/3} + 1 \\ y = t^3 - t \end{cases},$$

and the path of the particle is shown in figure 1b. Observe that the particle passes through the point (2,0) twice.

- (a) (6 points) Find the times t_1 and t_2 at which the particle is at the point (2,0).
- (b) (10 points) Give equations for both tangent lines to the curve at the point (2,0).

Last edited 11/12/2022 adamski@fordham.edu

- 5. Give parametric equations that describe the motion of a particle that moves around the circle with center (-1,2) and radius 3 in the manner described. Remember to specify the domain of the parametric equations.
 - (a) (6 points) Halfway around clockwise, starting at (-1, 5).
 - (b) (6 points) Twice around counterclockwise, starting at (-4, 2).
- 6. Consider the following two polar curves.

$$r = 3 + 2\sin\theta\tag{1}$$

$$r = 3 \tag{2}$$

- (a) (10 points) Sketch both polar curves on the axes below and give polar coordinates for all points of intersection.
- (b) (14 points) Find the area of the region inside (1) and outside (2).

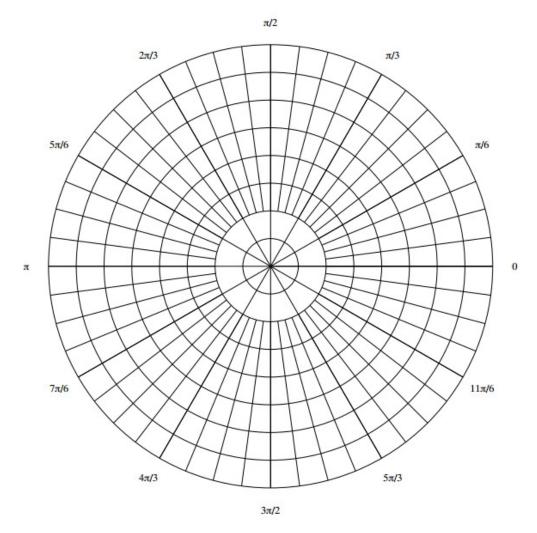


Figure 2: Please put your answer to question 6a here.