Exam 1

Answer all 5 questions for a total of 101 points. Write your solutions in the accompanying blue book, and put a box around your final answers. If you solve the problems out of order, please skip pages so that your solutions stay in order. Good luck!

- 1. Evaluate and/or simplify each of the following expressions.
 - (a) (5 points) $\sin^{-1}(\sin(\pi))$
 - (b) (5 points) $\sec(\tan^{-1} x)$
 - (c) (5 points) $\frac{d}{dt} \sinh(\ln t)$
- 2. Evaluate each of the following limits.
 - (a) (8 points) $\lim_{x\to 0^+} \tan^{-1}(\ln x)$
 - (b) (8 points) $\lim_{x \to 0} \frac{x \sin x}{x \tan x}$
 - (c) (8 points) $\lim_{x\to\infty} x^{e^{-x}}$
- 3. Evaluate each of the following integrals.
 - (a) (10 points) $\int \sec^3 x \tan^5 x \, dx$
 - (b) (10 points) $\int \frac{5x^2 5x + 12}{x^3 + 4x} dx$
 - (c) (10 points) $\int x^2 e^x dx$
 - (d) (10 points) $\int_{1/4}^{\sqrt{3}/4} \sqrt{1 4x^2} \, dx$
- 4. (10 points) Evaluate the improper integral if it converges. Otherwise, show that it diverges.

$$\int_{1}^{\infty} \frac{\ln x}{x^2} \ dx$$

5. Approximate the definite integral

$$\int_0^2 16^x dx$$

- (a) (6 points) using the midpoint rule with n = 4 subintervals.
- (b) (6 points) using Simpson's rule with n=4 subintervals.