Calculus I Recitation (Adamski) Tuesday, October 13, 2020 · Min/max Finding absolute maxima and absolute mining of functions defined on intends. Extreme Value Theorem A Continuous function en a finite interes always has our absolute max and an absolute min. Ex what can go wrong f(x)= x on (0)] · y=x=fix) does not bave an absolute minimum. ____ Note: sutonal Cosi] is not closed. S(x) = x cn [0,0) & her no marinum because [0,0) 15 not finite. Here on [1,1], I har no absolute minimum of her an absolute maximum of y=1

This max occurs at x=-1, x=0, and x=+1. Here & is not continuous of X=0 is not continuer on [-1,1]. EUT SK2) abs min S(x.) absmax 4=1x1=f(x) f(x3) Closed Interval Method Given a Continuous function of on a mingriso S'(0) DNE closel (and finite) intoval [a,6], our Goal. Find abs max and abs min off. 1) Find critical points of f on [a,b] i) Find X, axxxb such that f(x)=0 in) Find X, axxx b such that SIXI DNE (2) Chech endpoints a, b. Both abs max and abs min will be among fa), f(b), or f(c) where c is a critial point. absonce fic). abs min abs max

Ex Find abs max and abs mis of $f(x) = x^3 - 3x^2 + 1$ on $[-\frac{1}{2}x^4]$. · [a, 6] = [-1/2, 4] is closed. . Is continuous ble it is a polynomial. 1 Critical points: 5/1x)= 3x2-6x+0 IS f'(x)=0 = 3x(x-2) then x=0 on x=2 Sign chart & TO OCXXZ ZZZ ZXX Nice Check I sucreasis f decreasing functions $f(0) = 0^3 - 3(0^2) + 1 \neq 1$ $f(2) = 2^3 - 3.2^2 + 1 = 8 - 12 + 1 = -3$ Notice f'(x) always exists. (It is a polynomial) 2) Endparts a= -/2; f(-/2) = (-/2)3-3(-/2)2+1 $= -\frac{1}{8} - \frac{3}{4} + 1 = -\frac{1}{8} + \frac{1}{4} = \frac{1}{8}$ b = 4; $f(4) = 4^3 - 3.4^2 + 1 = 64 - 48 + 1$ The abs max of f is 17. The max occurs d = 4. The abs min of f is -3. The min occurs et x= Z. 5(x) 8 81 -3 817 checks

Ex f(+)= 2 cos(+) + sin(24) on [0, 5] Find absolute extrema of function for intout [0,7] f(t) = -2 Sin(t) + 2 Cos(2t) (s'(e) always exists) O, want $\frac{\partial}{\partial t} t = 1$ Solve for to 15 / Sin(4) = /cos(24) 5/14)=0 COS(24) = COS(14) - Sin(4) $Cos^{2}\Theta = \frac{1 + Cos(20)}{2}$ $Cos^{2}\Theta + Sin^{2}\Theta = \frac{1}{2} + \frac{1}{2} = 1$ $Cos^{2}\Theta - Sn^{2}\Theta = \frac{1}{2} + \frac{1}{2} = 1$ = Cos(20)Solve fortin Since) = (05°(E) - Sin²(E) SINH) = (1-SIN2H) - SIN2H) = 1-2512H) 25127(4) + SIN(4)-1 = 0 (25.14) - 1)(5.14) + 1) = 0[251124) + 25116) -5116)-1 = 251124) + 5114)-17 -: Sin(4) = 2 or Sin(4) = -1 for 0 = 4 = 1/2 二七=四 no solutions in [0, 1] (Yay) t= The rs the only critical point. 2,57 S(+) = 2005(+) + Sin(2+) f(な) = 2 cos(な) + sい(を) = 2(を)+(ら)

Endits f(0) = 2 cos(0) + Sn(0) = 2 S(1/2) = 2 cos(1/2) + Sn(tt) = 0

i. Abs max rs... 3/13, which occurs at X= = = al Abs min is ... B, which occurs at X= = =.