## 7.4 Combinations and Permutations

Example/Discussion Problems

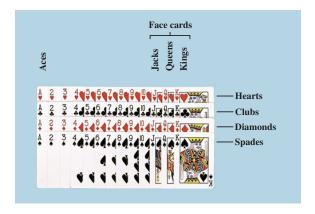



Figure 1: A standard deck of 52 cards.

1. How many 5-card poker hands are possible?

## **Combinations**

If C(n, r), denotes the number of combinations of n elements taken r at a time, where  $r \le n$ , then

$$C(n,r)=\frac{n!}{(n-r)!\,r!}.$$

- 2. How many 5-card poker hands are possible with 2 pairs?
- 3. How many 5-card poker hands are possible with 3 of a kind?
- 4. When playing 5-card poker, what is the probability of being dealt 2 pairs? 3 of a kind?
- 5. A sandwich shop instructs customers to place their order as follows.

| Choose 1    | Choose 2    | Choose 0, 1, 2, or 3 |
|-------------|-------------|----------------------|
| White       | Chicken     | Lettuce              |
| Whole Wheat | Beef        | Tomatoe              |
| Multi-grain | Bacon       | Onions               |
|             | Black Beans | Pickles              |
|             | Red Beans   | Olives               |
|             | Avacado     | Mayonaise            |
|             |             | Mustard              |
|             |             | Ketchup              |

John Adamski, PhD 1 adamski@fordham.edu

How many different sandwiches is it possible to order?

- 6. In how man ways can 4 coworkers each take 2 donuts from a box of 12 distinct donuts?
- 7. How many ways can a team of 16 choose 3 players to play offense, 2 players to play defense, and 1 player to play goalie?
  - (Compare to choosing 1 president, 1 vice-president, 1 treasurer.)
- 8. A woman sending Christmas cards to her three nephews. Before mailing the 3 envelopes, she takes 9 \$100 bills and randomly splits them between the three envelopes so that each nephew receives at least one \$100 bill. How many ways are there for her to do this? https://en.wikipedia.org/wiki/Stars\_and\_bars\_(combinatorics)

Challenge: What if it is not required that each nephew receive at least one \$100 bill?

9. How many ways are there to walk from W 43 St and 11th Ave to W 57 St and 6th Ave, without walking out of the way and without taking Broadway?

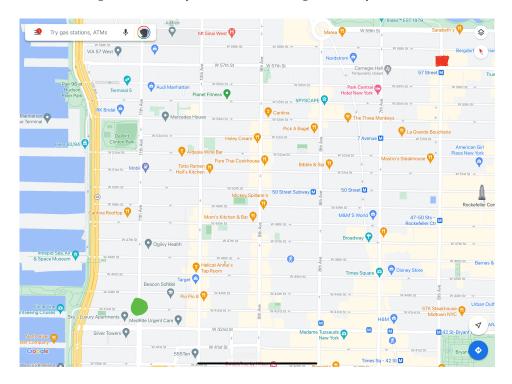



Figure 2: maps.google.com

10. How many ways are there to *drive* from W 43 St and 11th Ave to W 57 St and 6th Ave, without walking out of the way and without taking Broadway?

John Adamski, PhD 2 adamski@fordham.edu

| Permutations                             | Combinations                              |
|------------------------------------------|-------------------------------------------|
| Different orderings or arrangements      | Each choice or subset of <i>r</i> objects |
| of the r objects are different permu-    | gives one combination. Order within       |
| tations.                                 | the group of $r$ objects does not matter. |
| $P(n,r)=\frac{n!}{(n-r)!}$               | $C(n,r)=\frac{n!}{(n-r)!r!}$              |
| Clue words: arrangement, schedule, order | Clue words: group, committee, set, sample |
| Order matters!                           | Order does not matter!                    |

Figure 3: Permutations vs. combinations.