DEF: A SET IS A COLLECTION OF OBSECTS CALLED ELEMENTS.

WE TYPICALLY USE CAPTUR LYMPUS TO DENOTE SETS.

AND A GREEK EPSILOW "E" TO SAY THAT ONE THING IS AN ELEMENT OF A SET.

THE NUMBER OF ELEMENTS A SET CONTAINS IS DENDED IN (A) OR (A).

A SET THAT CONTAINS O ELEMENTS (i.e. { }) IS CALLED THE CHRIT SET OR NULL SET, DENOTED \$\foralle{O}\$.

eq.
$$n(\phi) = 0$$
, $0 \notin \phi$

"Such THAM"

THE RULE METHOD: \mathbb{E} A = $\{ \times \mid \times \text{ is an integer. and } -3 < \times \leq 2 \ \} = ...$ \mathbb{E} B = $\{ \times \mid \times \mid \times^2 = 25 \ \} = ...$ The set of all numbers X such that X squared equals 25

GIVEN TWO SETS A,B WE SAY A IS A SUBSET OF B,
DENOTED ACB, IF EVERLY ELEMENT OF A IS ALSO AN (OR B=A)
ELEMENT OF B.

In Problems 7–14, indicate true (T) or false (F).

7.
$$\{1,2\} \subset \{2,1\}$$
 \checkmark

7.
$$\{1,2\} \subset \{2,1\}$$
 7 8. $\{3,2,1\} \subset \{1,2,3,4\}$ **7**

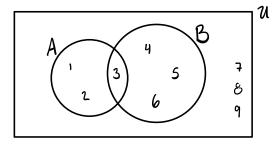
9.
$$\{5, 10\} = \{10, 5\}$$
 10. $1 \in \{10, 11\}$

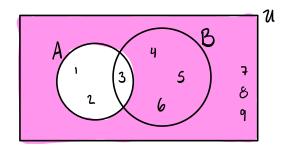
10.
$$1 \in \{10, 11\}$$

11.
$$\{0\} \in \{0, \{0\}\}\ \, \mathsf{T}$$
 12. $\{0, 6\} = \{6\}\ \, \mathsf{F}$

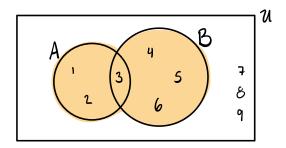
12.
$$\{0,6\} = \{6\}$$

13.
$$8 \in \{1, 2, 4\}$$

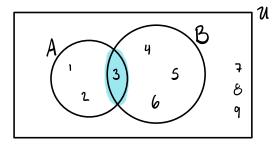

13.
$$8 \in \{1, 2, 4\}$$
 F 14. $\emptyset \subset \{1, 2, 3\}$ **T**


ex. List ALL SUBSETS OF A= {a,b,c}.

Note: The EMPTY SET IS A SUBSET OF EVERY SET.

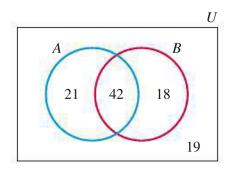

Two seas A,B are Earl (A=B) IF A CB AND BCA.

VENN DIAGNAMS



THE COMPLIMENT OF A A'

THE UNION OF A AND B


THE INTERSECTION OF A AND B

AUB

In Problems 53–58, draw a Venn diagram for sets A, B, and C and shade the given region.

53.
$$A \cap B' \cap C$$
54. $A' \cap B' \cap C$
55. $(A \cap B)'$
56. $(A \cup B)'$
57. $A' \cup (B' \cap C)$
58. $(A \cap B)' \cup C$

In Problems 31–44, refer to the Venn diagram below and find the indicated number of elements.

31.
$$n(U)$$
 32. $n(A)$

33.
$$n(B)$$
 34. $n(A \cap B)$

35.
$$n(A \cup B)$$
 36. $n(B')$

37.
$$n(A')$$
 38. $n(A \cap B')$

39.
$$n(B \cap A')$$
 40. $n((A \cap B)')$

41.
$$n((A \cup B)')$$
 42. $n(A' \cap B')$

43.
$$n(A \cup A')$$
 44. $n(A \cap A')$

Insurance Using a random sample of 100 insurance customers, an insurance company generated the Venn diagram in Figure 10 where A is the set of customers who purchased auto insurance, H is the set of customers who purchased homeowner's insurance, and L is the set of customers who purchased life insurance.

- (A) How many customers purchased auto insurance?
- (B) Shade the region $H \cup L$ in Figure 10. Find $n(H \cup L)$.
- (C) Shade the region $A \cap H \cap L'$ in Figure 10. Find $n(A \cap H \cap L')$.

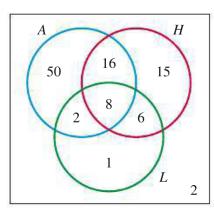


Figure 10