
§ 3.3 Future VALUE OF AN ANNUMY

Consider the sums

(a)
$$1 + 2 + 4 + 8 + ... + 128$$

= $2^{\circ} + 2^{1} + 2^{2} + 2^{3} + ... + 2^{7} = 255$

(b)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{1}{128}$$

= $\left(-\frac{1}{2}\right)^{2} + \left(-\frac{1}{2}\right)^{2} + \left(-\frac{1}{2}\right)^{2} + \dots + \left(-\frac{1}{2}\right)^{7} = .6640625$

(c)
$$1 + \frac{1}{4} + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^3 + \dots = \frac{4}{3}$$

EG. TRIANGLE WITH AREA 4.

Def: A FINTE Geometric Serves is any sum in Terms of the Form $a + ar + ar^2 + ar^3 + ... + ar^{n-1}$

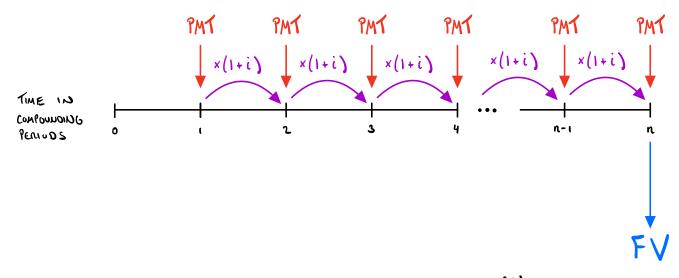
Let
$$S = a + ar + ar^2 + ar^3 + ... + ar^{n-1}$$

$$rS: ar + ar^{2} + ar^{3} + ... + ar^{n-1} + ar^{n}$$
 (2)

$$(1)-(1): rS-S=\alpha r^n-\alpha$$

$$S(r-1): \alpha(r^n-1) => S=\alpha\left(\frac{r^n-1}{r-1}\right)$$

SUM OF A FINTE GEOMETIC SEQUENCE


$$a + ar + ar^{2} + ar^{3} + ... + ar^{n-1} = a \left(\frac{r^{n}-1}{r-1} \right)$$

DEF: AN ANNUMY IS A SECUENCE OF EQUAL SIZE PAYMENTS/WHOTAWALS WO/OUT OF AN ACCOUNT EARNING COMPOUND WHEREST.

WHEN THE PAYMENTS/WITHDRAWALS OCCUR AT AN ORDINARY ANDUTY IS THE END OF EACH CONFOUNDING PERIOD.

THE FUTURE VALUE OF AN ANDUMY IS THE END BALANCE OF THE ACCOUNT CREATED FOR THE ANNUITY.

QUESTION: SUPPOSE YOU MAKE PAYMENTS OF PMT DOLLARS AT THE END OF WO AN ACCOUNT THAT EARNS AN INTEREST RHE COMPOUNDING PERIOD PER COMPOUNDING PERIOD. WHAT IS THE FUTURE VALUE FV OF THIS MUUUUA AFTER IN COMPOUNDING PERIODS / PAYMENTS ?

$$FV = PMT + (1+i)PMT + (1+i)^{2}PMT + ... + (1+i)^{n-1}PMT$$

$$= PMT \left(1 + (1+i) + (1+i)^{2} + ... + (1+i)^{n-1} \right)$$

$$FV = PMT \frac{(1+i)^n - 1}{i}$$

PMT = PERMODIC PAYMENT

FV: Furne Value

i : WHENEST PEAL

COMPOUNDING YEARD

n: 1614L NUMBER OF DEPOSITS/ COMPONDEMS PERIODS

28. USG Annuity and Life offered an annuity that pays 7.25% compounded monthly. If \$1,000 is deposited into this annuity every month, how much is in the account after 15 years? How much of this is interest?

- **34.** Parents have set up a sinking fund in order to have \$120,000 in 15 years for their children's college education. How much should be paid semiannually into an account paying 6.8% compounded semiannually?
- **36.** If \$2,000 is deposited at the end of each quarter for 2 years into an ordinary annuity earning 7.9% compounded quarterly, construct a balance sheet showing the interest earned during each quarter and the balance at the end of each quarter.

1				1		
Penioo	Payment	INTERES	1 (.0079 x Pa	EV. BALANCE	BALANCE	Priev. Balance + _
1	2000				2000	
٤	2000	.01975	× 2000 = 3	1.50	2000 + 39	.50 = 2039.50
3	2000		A	В	С	D
4	2000	1	Period	Payment	Interest	Balance
		2	1	2000		2000
5	2000	3	2	2000	39.5	2039.5
		4	3	2000	40.280125	2079.780125
6	2000	5	4	2000	41.07565747	2120.855782
		6	5	2000	41.8869017	2162.742684
7	2000	7	6	2000	42.71416801	2205.456852
7						l
¥ 8		8	7	2000	43.55777283	2249.014625

https://docs.google.com/spreadsheets/d/ IIa6S5UgwiRrfFOdiMpV-YNIk35b4yoVotzdcdg4AqIo/edit