# 1 Bernoulli Trials and Binomial Experiments

## **DEFINITION** Bernoulli Trials

A sequence of experiments is called a **sequence of Bernoulli trials**, or a **binomial experiment**, if

- 1. Only two outcomes are possible in each trial.
- 2. The probability of success p for each trial is a constant (probability of failure is then q = 1 p).
- 3. All trials are independent. ( IDENTICAL : SAME P & 9

Ful cond,

Row Dice

1

1

1001

Builtous of in Beaucour Tapes

**Definition** A **binomial experiment** is one that has these five characteristics:

- 1. The experiment consists of n identical trials.
- 2. Each trial results in one of two outcomes. For lack of a better name, the one outcome is called a success, S, and the other a failure, F.
- 3. The probability of success on a single trial is equal to p and remains the same from trial to trial. The probability of failure is equal to (1 p) = q.
- 4. The trials are independent.
- 5. We are interested in x, the number of successes observed during the n trials, for  $x = 0, 1, 2, \ldots, n$ .

Possible Values For X: 0, 1, 2,3,..., n.

- 1. Label each of the following experiments as binomial or not binomial.
  - (a) A single coin is flipped repeatedly until a head is observed and x is the number of flips. No. 1 we let
  - (b) Seven cards are dealt from a shuffled deck of 52 cards and x is the number of aces dealt. No. Loc
  - (c) Due to a pandemic, only 1 out of every 5 customers is allowed into a particular store. Sarah visit this store on 7 consecutive days and x is the number times she is allowed into the store.
  - (d) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar simulteously and x is the number of red marbles.
  - (e) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar, replacing the marble after each selection, and x is the number of red marbles.

## **Definition** A **binomial experiment** is one that has these five characteristics:

- 1. The experiment consists of *n* dentical trials.
- 2. Each trial results in one of two outcomes. For lack of a better name, the one outcome is called a success, S, and the other a failure, F.
- 3. The probability of success on a single trial is equal to p and remains the same from trial to trial. The probability of failure is equal to (1 p) = q.
- 4. The trials are independent.
- 5. We are interested in x, the number of successes observed during the n trials, for  $x = 0, 1, 2, \ldots, n$ .

n must be defined!



- 1. Label each of the following experiments as binomial or not binomial.
- $\mathbf{x}$  (a) A single coin is flipped repeatedly until a head is observed and x is the number of flips.
- (x) Seven cards are dealt from a shuffled deck of 52 cards and x is the number of aces dealt.
  - (c) Due to a pandemic, only 1 out of every 5 customers is allowed into a particular store. Sarah visit this store on 7 consecutive days and x is the number times she is allowed into the store.
- (d) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar simulteously and x is the number of red marbles.
- (e) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar, replacing the marble after each selection, and x is the number of red marbles.

#### **Definition** A **binomial experiment** is one that has these five characteristics:

- 1. The experiment consists of *n* identical trials.
- 2. Each trial results in one of two outcomes. For lack of a better name, the one outcome is called a success, S, and the other a failure, F.
- 3. The probability of success on a single trial is equal to p and remains the same from trial to trial. The probability of failure is equal to (1 p) = q.
- 4. The trials are independent.
- 5. We are interested in x, the number of successes observed during the n trials, for  $x = 0, 1, 2, \ldots, n$ .



#### **DEFINITION** Binomial Distribution

$$P(X_n = x) = P(x \text{ successes in } n \text{ trials})$$
$$= {}_{n}C_{x}p^{x}q^{n-x} \qquad x \in \{0, 1, 2, \dots, n\}$$

where p is the probability of success and q is the probability of failure on each trial. Informally, we will write P(x) in place of  $P(X_n = x)$ .

- 2. Imagine two different six-sided fair dice, called die A and die B.
  - Die A has its faces labeled 1, 1, 1, 2, 2, 3.
  - Die B has its faces labeled 1, 2, 2, 3, 3, 3.

Which of the following events is more likely? Why?

- (a) Roll die A 5 times and roll a 2 exactly 3 times.
- (b) Roll die B 12 times and roll a 3 exactly 7 times.
- (c) Roll both dice simulataneously 9 times and roll doubles exactly 6 times.

# DISTURD ANNANGEMENTS OF K SUCCESSES & N-K FAILURES.

# WAMS TO GET K SUCCESSES IN 12 TMALS

rl=7 Thans

K=4 SUCESSES

7-4

## **DEFINITION** Binomial Distribution

$$P(X_n = x) = P(x \text{ successes in } n \text{ trials})$$
$$= {}_{n}C_{x}p^{x}q^{n-x} \qquad x \in \{0, 1, 2, \dots, n\}$$

where p is the probability of success and q is the probability of failure on each trial. Informally, we will write P(x) in place of  $P(X_n = x)$ .

- 2. Imagine two different six-sided fair dice, called die A and die B.
  - Die A has its faces labeled 1, 1, 1, 2, 2, 3.
  - Die B has its faces labeled 1, 2, 2, 3, 3, 3.

Which of the following events is more likely? Why?

- (a) Roll die A 5 times and roll a 2 exactly 3 times.
- (b) Roll die B 12 times and roll a 3 exactly 7 times.
- (c) Roll both dice simulataneously 9 times and roll doubles exactly 6 times.

(a) BINOMIAL EXP. 
$$n: 5$$
 TRIALS . COURT  $2's = )$  SUCCESS = ROLL 2

PLONICESS) =  $P: \frac{2}{6} : \frac{1}{3}$ 

PLAILURE) =  $g: 1-p: 1-\frac{1}{3} : \frac{3}{3}$ 

1. IDENTICAL

TRIALS.

PLX =  $k$ ) =  $n \cdot C_{K} \cdot p^{K} \cdot g^{n-K}$ 

PLX =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =  $3$  =

#### **DEFINITION** Binomial Distribution

$$P(X_n = x) = P(x \text{ successes in } n \text{ trials})$$
$$= {}_{n}C_{x}p^{x}q^{n-x} \qquad x \in \{0, 1, 2, \dots, n\}$$

where p is the probability of success and q is the probability of failure on each trial. Informally, we will write P(x) in place of  $P(X_n = x)$ .

- 2. Imagine two different six-sided fair dice, called die A and die B.
  - Die A has its faces labeled 1, 1, 1, 2, 2, 3.
  - Die B has its faces labeled 1, 2, 2, 3, 3, 3.

Which of the following events is more likely? Why?

- (a) Roll die A 5 times and roll a 2 exactly 3 times.
- (b) Roll die B 12 times and roll a 3 exactly 7 times.
- (c) Roll both dice simulataneously 9 times and roll doubles exactly 6 times.

(b) 
$$n=12$$
,  $p=\frac{3}{6}=\frac{1}{2}$ ,  $g=1-p=\frac{1}{2}$   
 $P(x=7)=_{n}C_{x}p^{x}g^{n-x}=_{n}C_{7}(\frac{1}{2})^{7}(\frac{1}{2})^{n-7}=_{n}C_{7}(\frac{1}{2})^{n}$ 

$$= (.1934)$$

(c) 
$$n = 9$$
,  $p = \frac{5}{18}$ 

$$P(x=6) = C_6 \left(\frac{5}{18}\right)^6 \left(\frac{13}{18}\right)^3$$

Darbues: 
$$(1,1)$$
 on  $(2,2)$  are  $(3,5)$   $(\frac{1}{2})(\frac{1}{6}) + (\frac{1}{3},\frac{1}{3}) + (\frac{1}{6})(\frac{1}{2})$ 

Page 3

When x is the number of successes in a series of n Bernoulli trials, the mean and standard deviation for x are as follows.

ex. We are FUP A cars 10 11MES.

Mean:

$$\mu = np$$

coull x = \$ HEADS.

**Standard deviation:** 

$$\sigma = \sqrt{npq}$$

SHARE RESULTS.

3. Let x represent be the number of success in 20 B rnoulli trials, each with probability of success p = .85. Find the mean (i.e. expected value) and standard deviation for x.

"ExPECTED VALVE"

n=6 p=.5 g=.5

# 2 Normal Distributions



Figure 1: The 68-95-99.7 rule for normal distributions.

- 4. A machine in a bottling plant is set to dispense 12 oz of soda into cans. The machine is not perfect, and so every time the machine dispenses soda, the exact amount dispensed is a number x with a normal distriution. The mean and standard deviation for x are  $\mu=12$  oz and  $\sigma=0.15$  oz, respectively. Approximate the following probabilities using the 68-95-99.7 rule.
  - (a) Give a range of values such that the amount of soda in 68% of all cans filled by this machine are in this range.
  - (b) Give a range of values such that the amount of soda in 95% of all cans filled by this machine are in this range.
  - (c) Give a range of values such that the amount of soda in 99.7% of all cans filled by this machine are in this range.
  - (d)  $P(11.85 \le x \le 12.15)$  .65
  - (e)  $P(11.70 \le x \le 12)$  .475
  - (f)  $P(x \le 11.70)$
  - (g)  $P(12.3 \le x \le 12.45)$
  - (h)  $P(x \le 12 \cup x \ge 12.45)$



# 2 Normal Distributions



Figure 1: The 68-95-99.7 rule for normal distributions.

- 4. A machine in a bottling plant is set to dispense 12 oz of soda into cans. The machine is not perfect, and so every time the machine dispenses soda, the exact amount dispensed is a number x with a normal distriution. The mean and standard deviation for x are  $\mu=12$  oz and  $\sigma=0.15$  oz, respectively. Approximate the following probabilities using the 68-95-99.7 rule.
  - (a) Give a range of values such that the amount of soda in 68% of all cans filled by this machine are in this range.
  - (b) Give a range of values such that the amount of soda in 95% of all cans filled by this machine are in this range.
  - (c) Give a range of values such that the amount of soda in 99.7% of all cans filled by this machine are in this range.
  - (d)  $P(11.85 \le x \le 12.15)$
  - (e)  $P(11.70 \le x \le 12)$
  - (f)  $P(x \le 11.70)$
  - (g)  $P(12.3 \le x \le 12.45)$
  - (h)  $P(x \le 12 \cup x \ge 12.45)$