1108 Math for Business: Finite Binomial Distributions, Normal Distributions Module 9

1 Bernoulli Trials and Binomial Experiments

DEFINITION Bernoulli Trials
A sequence of experiments is called a sequence of Bernoulli trials, or a binomial
experiment, if

1. Only two outcomes are possible in each trial. il con

2. The probability of success p for each trial is a constant (probability of failure AL DICE
istheng =1 — p). 1

3. All trials are independent. ( oeaital © SAME ? é z) \ e
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Definition A binomial experiment is one that has these five characteristics:

1. The experiment consists of n identical trials.

2. Each trial results in one of two outcomes. For lack of a better name, the one out-
come is called a success, S, and the other a failure, F.

3. The probability of success on a single trial is equal to p and remains the same
from trial to trial. The probability of failure is equal to (1 — p) = q.

4. The trials are independent.

5. We are interested in x, the number of successes observed during the n trials,
forx=0,1,2,...,n.
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1. Label each of the following experiments as binomial or not binomial.
(a) A single coin is flipped repeatedly until a head is observed and z is the number of flips. “O. (WX | D3
(b) Seven cards are dealt from a shuffled deck of 52 cards and = is the number of aces dealt. \yy. DA WD

(¢) Due to a pandemic, only 1 out of every 5 customers is allowed into a particular store. Sarah visit
this store on 7 consecutive days and x is the number times she is allowed into the store.

(d) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar simulteously
and z is the number of red marbles.

(e) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar, replacing the
marble after each selection, and x is the number of red marbles.

Definition A binomial experiment is one that has these five characteristics:

1. The experiment consists of@)dentical trials.

2. Each trial results in one of two outcomes. For lack of a better name, the one out-
come is called a success, S, and the other a failure, F.

3. The probability of success on a single trial is equal to p and remains the same
from trial to trial. The probability of failure is equal to (1 — p) = q.

4. The trials are independent.

5. We are interested in x, the number of successes observed during the@rials,
forx=0,1,2,....,n &
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1. Label each of the following experiments as binomial or not binomial.
X (a) A single coin is flipped repeatedly until a head is observed and x is the number of flips.
A b) Seven cards are dealt from a shuffled deck of 52 cards and z is the number of aces dealt.

(¢) Due to a pandemic, only 1 out of every 5 customers is allowed into a particular store. Sarah visit
this store on 7 consecutive days and x is the number times she is allowed into the store.

x (d) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar Simulteously
and x is the number of red marbles.

(e) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar,replacing the
marble after each selection; and x is the number of red marbles.

Definition A binomial experiment is one that has these five characteristics:

1. The experiment consists of n identical trials.

2. Each trial results in one of two outcomes. For lack of a better name, the one out-
come is called a success, S, and the other a failure, F.

3. The probability of success on a single trial is equal to p and remains the same
from trial to trial. The probability of failure is equal to (1 — p) = q.

4. The trials are independent.

5. We are interested in x, the number of successes observed during the n trials,
forx=0,1,2,...,n
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DEFINITION Binomial Distribution

P(X, = x) = P(x successes in n trials)
= anpan_x X € {0, 1, 2,. c ey n}

where p is the probability of success and g is the probability of failure on each trial.
Informally, we will write P(x) in place of P(X, = x).

2. Imagine two different six-sided fair dice, called die A and die B.
e Die A has its faces labeled 1, 1, 1, 2, 2, 3.
e Die B has its faces labeled 1, 2, 2, 3, 3, 3.

Which of the following events is more likely? Why?
(a) Roll die A 5 times and roll a 2 exactly 3 times.
(b) Roll die B 12 times and roll a 3 exactly 7 times.

(¢) Roll both dice simulataneously 9 times and roll doubles exactly 6 times.
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DEFINITION  Binomial Distribution
P(X, = x) = P(x successes in n trials)

= anpan_x X € {0, 1, 2,. c ey n}

where p is the probability of success and g is the probability of failure on each trial.
Informally, we will write P(x) in place of P(X, = x).

2. Imagine two different six-sided fair dice, called die A and die B.
e Die A has its faces labeled 1, 1, 1, 2, 2, 3.
e Die B has its faces labeled 1, 2, 2, 3, 3, 3.
Which of the following events is more likely? Why?
(a) Roll die A 5 times and roll a 2 exactly 3 times.
(b) Roll die B 12 times and roll a 3 exactly 7 times.

(¢) Roll both dice simulataneously 9 times and roll doubles exactly 6 times.
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DEFINITION Binomial Distribution

P(X, = x) = P(x successes in n trials)
= anpan_x X € {0, 1, 2,. c ey n}

where p is the probability of success and g is the probability of failure on each trial.
Informally, we will write P(x) in place of P(X, = x).

2. Imagine two different six-sided fair dice, called die A and die B.
e Die A has its faces labeled 1, 1, 1, 2, 2, 3.
e Die B has its faces labeled 1, 2, 2, 3, 3, 3.

Which of the following events is more likely? Why?
(a) Roll die A 5 times and roll a 2 exactly 3 times.

(b) Roll die B 12 times and roll a 3 exactly 7 times.
(¢) Roll both dice simulataneously 9 times and roll doubles exactly 6 times.
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When z is the number of successes in a series of n Bernoulli trials, the mean and standard deviation for
x are as follows.

e, We aw EUf A w0 AIMES. Mean: w = np
ol Xz 4 Venos,

Standard deviation: V npq
SHae st s.

3. Let x represent be the number of success rnoulli trials, each with probability of success p = .85.
Find the mean (i.e. expected value) and sts

wmdhrd deviation for x.
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2 Normal Distributions
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Figure 1: The 68-95-99.7 rule for normal distributions.

4. A machine in a bottling plant is set to dispense 12 oz of soda into cans. The machine is not perfect,
and so every time the machine dispenses soda, the exact amount dispensed is a number x with a normal
distriution. The mean and standard deviation for x are u = 12 oz and ¢ = 0.15 oz, respectively.
Approximate the following probabilities using the 68-95-99.7 rule.

(a) Give a range of values such that the amount of soda in 68% of all cans filled by this machine are in
this range.

(b) Give a range of values such that the amount of soda in 95% of all cans filled by this machine are in
this range.

(¢) Give a range of values such that the amount of soda in 99.7% of all cans filled by this machine are
in this range.

(d) P(11.85 <z < 12.15) .pD

(e) P(11.70 <z < 12) 43S

(f) P(z < 11.70)

(g) P(12.3 < 2 < 12.45)

(h) P(z < 12Uz > 12.45) _,j//
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2 Normal Distributions
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Figure 1: The 68-95-99.7 rule for normal distributions.

4. A machine in a bottling plant is set to dispense 12 oz of soda into cans. The machine is not perfect,
and so every time the machine dispenses soda, the exact amount dispensed is a number x with a normal
distriution. The mean and standard deviation for x are u = 12 oz and ¢ = 0.15 oz, respectively.
Approximate the following probabilities using the 68-95-99.7 rule.

(a) Give a range of values such that the amount of soda in 68% of all cans filled by this machine are in
this range.

(b) Give a range of values such that the amount of soda in 95% of all cans filled by this machine are in
this range.

(¢) Give a range of values such that the amount of soda in 99.7% of all cans filled by this machine are
in this range.

) P(11.85 < z < 12.15)
) P(11.70 < z < 12)

) P(z < 11.70)

) P(12.3 < 2 < 12.45)

) P(z < 12Uz > 12.45)
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