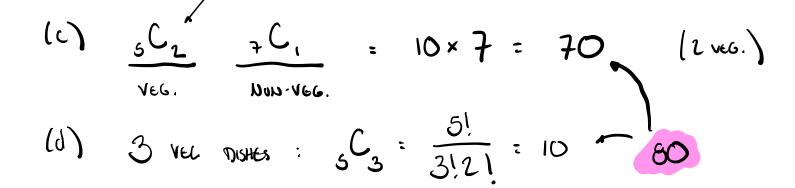
Module 5: counting (sections 7.3 and 7.4)

product rule $n(n-1)(n-2)\cdots (\#)$ permutations # was 10 charact obsects filling it desects, order matters $n^2 = \frac{n!}{(n-r)!}$ Combinations # was 10 charact obsects filling it desects, order doesn't matter. $n^2 = \frac{n!}{r!} = \frac{n!}{r!(n-r)!}$

Browd Rule: IF EXPERIMENT CAN BE PERFORMED IN K STACES AND

1⁵¹ STAGE HAS No POSSIBLE OUTCOMES


3rd STAGE HAS No POSSIBLE OUTCOMES

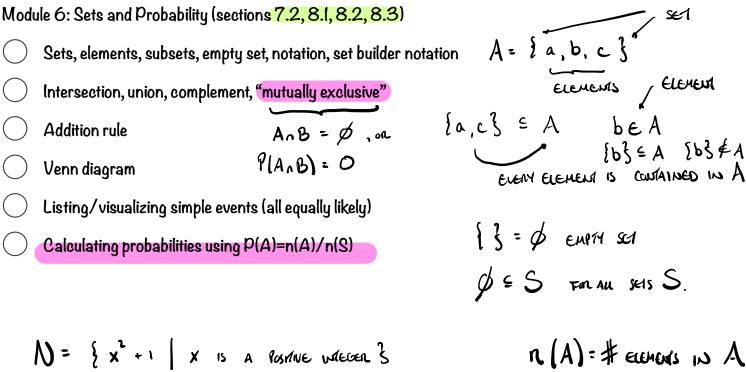
KTH STAGE HAS No POSSIBLE OUTCOMES

THEN THE EXPERIMENT HAS ninzni. .. nix Pasible outcomes.

- 1. A restaurant serves 12 side dishes -3 potato dishes, 5 vegetable dishes, and 4 pasta dishes. Customers are allowed to shoose three distinct side dishes.
 - (a) How many possible side dish combinations can one order at this restaurant?
 - (b) How many possible side dish combinations can one order at this restaurant if you have to order 1 potato dish, 1 begetable dish, and 1 pasta dish?
 - (c) How many possible side dish combinations can one order at this restaurant if you have to order exactly two vegetable dishes?
 - (d) How many possible side dish combinations can one order at this restaurant if you have to order at least two vegetable dishes?

(a)
$$C_3 = \frac{12!}{3! \, 9!} = \frac{12 \cdot 11 \cdot 10}{3 \cdot 2 \cdot 1} = 2 \cdot 11 \cdot 10 = 220$$

(b) $\frac{3}{90!} \times \frac{5}{100!} \times \frac{4}{100!} = 60$
 $C_1 \times C_2 \times \frac{4}{100!} = 60$



2. A club with 22 members must select a president, a vice-president, and secretary from among themselves. How many ways can they do this?

$$\frac{22}{P} \times \frac{21}{VP} \times \frac{20}{Sec.} = n \cdot \frac{9}{3} = 9.240$$

3. A club with 25 members -17 women and 8 men - must select 5 members to attend a club fair. If they want to send 3 women and 2 men, how many possible ways can they do this?

$$\frac{C_3}{V_{0NEN}} \times \frac{C_2}{M_{EN}} = 660 + 28 = 708$$

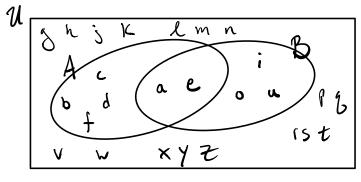
$$N = \{ x^{2} + 1 \mid x \text{ is a Positive whereas } \}$$

$$LIST = \{ x^{2} + 1 \mid x \text{ is a Positive whereas } \}$$

$$LIST = \{ x^{2} + 1 \mid x \text{ is a Positive whereas } \}$$

$$X = 1 \quad \Rightarrow \quad |^{2} + 1 \quad \Rightarrow \quad |$$

4. Let


$$A = \{ \mathbf{a}, b, c, d, \mathbf{e}, f \}$$
$$B = \{ \mathbf{a}, \mathbf{e}, i, o, u \}$$

- (a) Find $A \cap B$.
- (b) Find $A \cup B$.
- (c) List all subsets of $A \cap B$.

(d) How many subset of B exist?

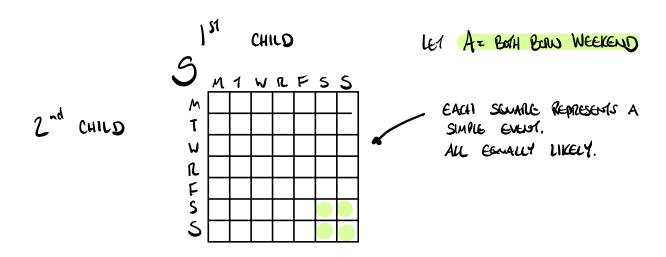
(AUB)

(e) If the universal set U is the 26-letter alphabet, how many elements are in $A' \cap B'$?

ADDITION RULE: $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ 9 = 6 + 5 - 2

IN GENERAL, It subsets of a set A is 2

DES: SAMPLE SPACE IS SET OF ALL POSSIBLE OUTCOMES OF


AN EXPERIMENT. AN OUTCOME THAT CAN OUTY HAPPEN IN

UNE WAY IS CALLED A SIMPLE EVENT.

WHEN ALL SIMILE EVENS ARE EXAMEN LIKELY, $P(A) = \frac{n(A)}{n(S)}$.

6. A family has two children.

- (a) What is the probability that both children were born on the weekend?
- (b) Given that neither child was born on a Monday, what is the probability that both children were born on the weekend?
- (c) Are the events "both children were born on the weekend" and "neither child was born on a Monday" inedependent events?
- (d) Are the events "both children were born on the weekend" and "neither child was born on a Monday" mutually exclusive events?

(a)
$$f(A) = \frac{n(A)}{n(S)} = \frac{4}{49} \approx .0816$$

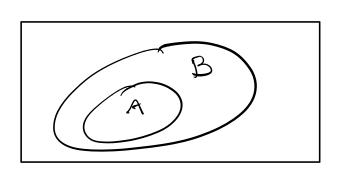
(Module 7: Conditioner Prub.

les B: NEITHER. YADUOM CHILD Bons ON

9	Μ	1	V	r	۴	S	S
Μ	X	X	X	X	X	X	X
7	X						
W	X						
R	X						
F	X						
۶ 5	X						
S	X						

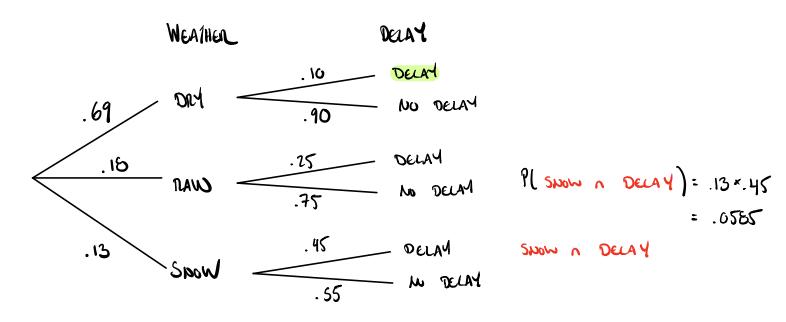
Az BOTH BOW WEEKEND

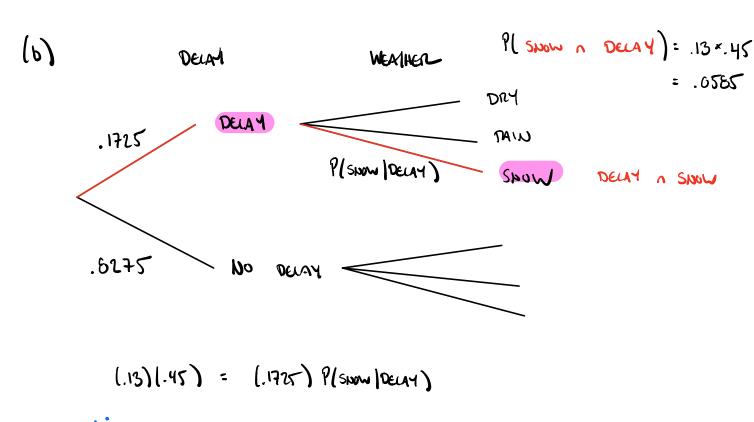
P(A/B) =
$$\frac{4}{36}$$
 ≈ . IIII


GIVEN THAT B HAS OCCURRED,

SANGLE SPACE IS SHRUNK.

Sel of Post astomes in nestancted


(c) A & INDEPENDENT?


(d) $A \in B$ $P(A \cap B) = P(A) = \frac{4}{49} \neq 0 \implies A,B \text{ ANTHAUY EXCLUSIVE}$

Module 7: Conditional probability (sections 8.3, 8.4) Definition of conditional probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ Multiplication rule: $P(A \cap B) = P(B)P(A|B)$ Definition of independent events: P(B)P(A|B)Bayes' formula P(A)P(B|A) P(A)P(B|A) $P(A \cap B) = P(A)P(B)$

- 7. When the weather is dry, the probability that your flight will be delayed is 10%. When is it raining, the probability that your flight will be delayed is 25%. When it is snowing, the probability that your flight will be delayed is 45%. Suppose the probability of rain is 18% and the probability of snow is 13%.
 - (a) What is the probability that your flight will be delayed?
 - (b) Suppose you are woken up by an alert that your flight is delayed, before you have a chance to check the weather. What is the probability that is snowing?

2.3391

Module 8: Descriptive statistics (sections 10.1, 10.2, 10.3)

- Frequency table, histogram, pie chart
- Sigma notation
- Mean, median, mode
- Standard deviation
 - 8. Calculate the following.

$$\sum_{k=2}^{6} \frac{5k+1}{2^k-1}$$

$$\frac{5(1)+1}{2^{\frac{1}{2}}-1}+\frac{5(3)+1}{2^{\frac{3}{2}}-1}+\frac{5(4)+1}{2^{\frac{4}{2}}-1}+\frac{5(7)+1}{2^{\frac{5}{2}}-1}+\frac{5(6)+1}{2^{\frac{6}{2}}-1}$$

9. A random sample of 6 bullfrogs were studied in their natural habitat, and the number of times that they croaked over a period of 15 minutes was recorded. This data is listed below.

$$35, 19, 26, 52, 26, 34$$
 (4)

Find the mean, median, mode, and standard deviation for the set of data.

MEAN
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{35 + 19 + ... + 34}{6} = \frac{192}{6} = 32$$

MEDAN 19 26 26 34 35 52
$$\frac{26+34}{7} = 30$$

MIDE: 26

S(AND. DEV.
$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 $X_i = 32$
 $X_i = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i - \bar{x})^2$
 X_i

= 11.4366