Module 7: CONDYNONAL PROBBLETY

SUMMARY Key Concepts

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 $P(B|A) = \frac{P(B \cap A)}{P(A)}$

Note: P(A|B) is a probability based on the new sample space B, while $P(A \cap B)$ and P(B) are probabilities based on the original sample space S.

Product Rule

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

Independent Events

• A and B are **independent** if

$$P(A \cap B) = P(A)P(B)$$

• If A and B are independent events with nonzero probabilities, then

$$P(A|B) = P(A)$$
 and $P(B|A) = P(B)$

- If A and B are events with nonzero probabilities and either P(A|B) = P(A) or P(B|A) = P(B), then A and B are independent.
- If E_1, E_2, \ldots, E_n are independent, then

$$P(E_1 \cap E_2 \cap \cdots \cap E_n) = P(E_1)P(E_2) \cdot \cdots \cdot P(E_n)$$

CONDITIONAL PROBABILITY

Suppose you want to approximate the probability that American Airlines flight 3821 will be delayed on a day that is overcast. To do this you observe AA3821 everyday for n days and record whether or not it was overcast that day, and whether or not the flight was delayed.

DAY	OVERCAST?	DELAYED?	
1	Uo Ves /	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PlA $\approx \frac{f_n(A)}{n}$
2 3 -4	763 / 100	πο Γο Γο	$P(A) = \lim_{n \to \infty} \frac{f_n(A)}{n}$
5 -6 7	162 / 100	<u> </u>	_
<u> </u>	765 /	168 / NO	$f_n(A \cap B) \qquad 2$
10	Y65√ ;	νο :	$P(A B) \approx \frac{f_n(A \cap B)}{f_n(B)} = \frac{2}{5}$
n	YES	Yes	

Let
$$f_n(A) = \#$$
 times fugnt AA3821 is decised

$$f_n(B) = \#$$
 times the weather is decised

$$f_n(A \cap B) = \#$$
 times fugnt AA3821 is decised

AND the weather is decised

$$\frac{P(A|B)}{f_n(B)} = \frac{f_n(AnB)}{f_n(B)/n}$$

$$\frac{f_n(AnB)}{f_n(B)/n}$$

$$\frac{f_n(AnB)}{f_n(B)} = \frac{P(AnB)}{P(B)}$$

Example. The marketing department for a website that asks visitors to login with their Facebook account has collected data on its users from Facebook Analytics. This data is summarized in the following tables.

- 1. What percentage of your visitors follow the rock?
- 2. What percentage of your visitors follow Cats of Instagram?
- 3. If your company has budgeted \$2500 to spend on Instagram ads, at \$1.25 per click (you only pay when someone clicks the ad/visits your website), should you target your ads toward followers of The Rock or followers of Cats of Instagram?

Website Visitus That	PLACE AN	DO HOS PLACE	TAAL	
Facon The Rock	10,258	103,886	114, 144	
DO NOT FOLLOW THE ROCK	56,121	205, 132	261,253	
TUAL	66,379	304,016	375,397	

Websile Visiturs That	PLACE AN	on has luce	THAL
Facow Cals of 1G	808	1,462	2,060
CAIS OF 1G	65,771	307,566	373,337
TOTAL	66,379	309,015	375, 397

1.
$$P(R) = \frac{114,144}{375,397} = .3041 \rightarrow 30.41 \%$$

2.
$$P(C) = \frac{2060}{375,397} = .0059 \rightarrow 0.59 \%$$

$$\frac{n(P_nR)}{n(R)} = \frac{10,258}{114,144} = .0899 \rightarrow 8.99\%$$

$$= \frac{P(P_nR)}{P(R)} = \frac{10,258/375,397}{114,144/375,397}$$

(1)
$$P(P|C) = \frac{P(P \cap C)}{P(C)} = \frac{608/375,397}{2060/375,397} = .2951 \rightarrow 29.51%$$

Example. You know that your neighbors have two children. Then one day you see one of the children playing outside, and this child is a boy. What is the probability that the other child is also a boy?

1816 28 26

Example. Your company is about to begin a kickstarter campaign and wants to know the probability that you will be able to raise I million dollars in 8 weeks. You know that if the campaign video goes viral then the probability is 95%, and if the campaign does not go viral then there is a 70% chance. Suppose there is a 15% chance that the campaign video will go viral.

- What is the probability that the campaign video goes viral but the campaign is not able to raise I million dollars?
- 2. What is the probability that the campaign does not go viral and the campaign still raises I million dollars?
- 3. What is the probability that the campaign raises I million dollars?

Notation:
$$V = video$$
 Goes Viraz Given: $P(M | V) = .95$
 $M = Raise 1 mum Duans$
 $P(V) = .15$

INDEPENDENT EVENTS

IF
$$P(A|B) = P(A)$$
 THEN $A \stackrel{?}{\leftarrow} B$ ARE INDEPENDENT EVENTS

IF $P(B|A) = P(B)$ THEN $A \stackrel{?}{\leftarrow} B$ ARE INDEPENDENT EVENTS

	A	A	
B	.1	.6	.7
	. 3	0	.3

.4 .0

$$P(A) = .4$$
 $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{.1}{.7} = .14$
 $P(A) \neq P(A|B)$
 A,B Not neclearly

P(A)=.4 P(B)=.7

	A	A ^I	
ъ	.28	.42	.7
ც'	.12	.18	.3
	.4	.6	

$$P(A) = .4$$
 $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{.2E}{.7} = .4$
 $A \stackrel{?}{\in} B$ ARE INDERBURGED!

- 74. Ann and Barbara are playing a tennis match. The first player to win 2 sets wins the match. For any given set, the probability that Ann wins that set is $\frac{2}{3}$. Find the probability that
 - (A) Ann wins the match.
 - (B) 3 sets are played.
 - (C) The player who wins the first set goes on to win the match.

Let
$$A_1 = A_{NN}$$
 who 1^{M} set $B_2 = B_{ARBANA}$ into 1^{M} set $A_1 = A_2 = A_3$ and $A_3 = A_3$ and $A_4 = A_4$ and $A_5 = A_5$ and $A_5 = A_5$ and $A_6 = A_6$ and

$$P(\mathcal{B}_3 \mid \mathcal{B}_1 \cap A_2)$$

SINCE ALL EVENTS ARE INDEPENDENT

$$= \left(\frac{2}{3}\right)^{2} + 2\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)$$

- .7407

THEOREM 1 Bayes' Formula

Let U_1, U_2, \ldots, U_n be *n* mutually exclusive events whose union is the sample space *S*. Let *E* be an arbitrary event in *S* such that $P(E) \neq 0$. Then,

$$P(U_1|E) = \frac{P(U_1 \cap E)}{P(E)} = \frac{P(U_1 \cap E)}{P(U_1 \cap E) + P(U_2 \cap E) + \dots + P(U_n \cap E)}$$
$$= \frac{P(E|U_1)P(U_1)}{P(E|U_1)P(U_1) + P(E|U_2)P(U_2) + \dots + P(E|U_n)P(U_n)}$$

Similar results hold for U_2, U_3, \ldots, U_n .

LAW OF TOUR PROBABILITY:

(1) $U_i \cap U_j = \emptyset$, $i \neq j$.

THEN FOR ALL EVENT A = 5 WE HAVE

U₁

U₂

U₃

U₄

$$A = (A \wedge U_1) \cup (A \wedge U_2) \cup ... \cup (A \wedge U_n)$$

PlA) = PlAnu,) + PlAnu,) + ... + PlAnun)

Proof Rue

Urn I contains 5 white balls and 7 black balls. Urn 2 contains 3 whites and I2 black. A fair coin is flipped; if it is Heads, a ball is drawn from Urn I, and if it is Tails, a ball is drawn from Urn 2. Suppose that this experiment is done and you learn that a white ball was selected. What is the probability that this ball was in fact taken from Urn 2? (i.e., that the coin flip was Tails)

$$\frac{(\frac{1}{2})(\frac{3}{15})}{(\frac{5}{12})(\frac{5}{12}) + (\frac{1}{2})(\frac{3}{15})} = .3243$$