\$3.3 Forme VALUE OF AN ANNUMY

AN ORDINARY ANNUMY IS A SECURICE OF ECUAL SIZE PAYMENTS

R DEPOSITED AN THE END OF EACH PAYMENT PERIOD INTO AN ACCOUNT CARNING AN IMERIEST TATE (PER PAYMENT PERIOD, COMPONIDED AT THE ELD OF EACH PAYMENT PERIOD.

Surpose You make n Payments.

Let Sn be the Funne Value.

$$S_{n} = R + R(1+i) + R(1+i)^{2} + ... + R(1+i)^{n-1} + \frac{1}{SERLES}.$$

$$(1+i) S_{n} = R(1+i) + R(1+i)^{2} + ... + R(1+i)^{n-1} + R(1+i)^{n}$$

$$(1+i) S_{n} - S_{n} = R(1+i)^{n} - R$$

$$i S_{n} = R[(1+i)^{n} - 1]$$

$$i S_{n} = R[(1+i)^{n} - 1]$$

GEONGING Sories:

SUPPOSE WE HAVE AN EQUILATERAL TRIADGE WITH AREA 1. WHAT IS THE AREA OF THE SHADED REGION ? $\frac{1}{4}$ + $\left(\frac{1}{4}\right)^2$ + $\left(\frac{1}{4}\right)^3$ +... CO MANY TEAMS GEONETHIC SENIES EMIRE MANGLE = \(\frac{1}{3} \)

- **43.** Compubank, an online banking service, offered a money market account with an APY of 1.551%.
 - (A) If interest is compounded monthly, what is the equivalent annual nominal rate?
 - (B) If you wish to have \$10,000 in this account after 4 years, what equal deposit should you make each month?

EVERY YEAR , INVEST MENT IS

MUSIPHED BY (1+ 1/2)

the men enter than 1 is 17?

$$\Gamma_{\epsilon} : \left(1 + \frac{\Gamma}{\kappa}\right)^{\kappa} - 1$$

$$n \left[\left(r_{E} + 1 \right)^{1/n} - 1 \right] = r = 12 \left[\left(\frac{1.01551}{1.01551} \right)^{1/n} - 1 \right]$$

2 .01540

(b.)
$$S_n = \frac{R[(1+i)^n - 1]}{i}$$
 $S_n = 10,000$
 $i = \frac{.01540}{12}$ INJ. PER BYY. PERL

$$i = \frac{.01540}{12}$$
 INT. PER BY. PER

$$R = \frac{S_n i}{(1+i)^n - 1} \frac{10,000(\frac{.01540}{12})}{(1+\frac{.01540}{12})^{48} - 1}$$

EX. IF \$2000 IS DEPOSITED EVERLY 6 MODELS INTO AN ACCOUNT GAILUNG 6% INTEREST COMPOUNDED SEMIANNUALLY FOR 2 YEARS.

CONSTILUT A BALANCE SHEET FOIL THE INTEREST EARNED AND THE ACCOUNT BALANCE AT THE ELD OF EACH 6 MONTH PERIOD.

 Pearo	Delosi	INSERI	Invenessi		we		
1	2000	•	×.03	200	ပ င		
2	2000	60		4060			
3	2000		121.80		616180		11 4
4	2000	185.43	185.45		8367.25		(1.03)4-1
,		ا ع	ا د	,	4		_
	2000		rous	L	20℃	ひい	

33.4 PRESENT VALUE OF AN ALWORY

NOW SUPPOSE YOU WANT TO MAKE IN WITHDRAWAS OF GEMAL SIZE IR

AT THE END OF EACH PAYMENT PERLOD FROM AN ACCOUNT

EARLINGS WHEREST TATE I PER PAYMENT PERLOD, COMPONDED AT

THE END OF EACH PAYMENT PERLOD.

LET P BE THE AMOUNT OF MONEY YOU WOULD DEED TO REPORT TODAT

So THAT AFTER MAKING THESE WITHDRAWALS YOUR ACCOUNT BALANCE IS & O.

$$P = R(1+i)^{-1} + R(1+i)^{-2} + ... + R(1+i)^{-(n-1)} + R(1+i)^{-n}$$

$$(1+i)P = R + R(1+i)^{-1} + ... + R(1+i)^{-(n-2)} + R(1+i)^{-(n-1)}$$

$$(1+i)P - P = R - R(1+i)^{-n}$$

$$iP = R(1-(1+i)^{-n})$$

$$P = \frac{R[1-(1+i)^{-n}]}{i}$$

$$S_n = \frac{R[(1+i)^n - 1]}{i}$$

42. A recreational vehicle costs \$80,000. You pay 10% down and amortize the rest with equal monthly payments over a 7-year period. If you pay 9.25% compounded monthly, what is your monthly payment? How much interest will you pay?

Our Penspedine:

WE TAKE A LUAD OF 72,000. OUR DEBT GARDS
INTEREST GUERT MONTH. WE CHIP AWAY AT OUR
DEST (+ INSEREST) WITH EQUAL SIZED PAYMENTS SO
THAT AFTER 7 YEARS, DEST IS \$0.

BANK'S PERSPECTIVE:

THEN INVEST \$72,000 IN YOU. THEIR INVESTMENT

ENTILS USEREST EVERY MONTH. THEY MAKE EQUAL

SIZE WITHDRAWAIS FROM YOU, SO THAT AFTER 7 YEARS

ACCOUNT BRIQUE IS \$0.

$$\rho = \frac{n[1-(1+i)^{-n}]}{i}$$

$$l = 72,000$$

$$l = \frac{.0925}{12}$$

$$\frac{72000 \left(\frac{.0925}{12}\right)}{1 - \left(1 + \frac{.0925}{17}\right)^{-84}}$$

· \$1167.57

Werest = That Phynosis - mistral Low

= nl - P

= 84(1167.57) - 72,000

= \$98,075,88 -\$72,000

= \$26,075.88

44. Construct the amortization schedule for a \$10,000 debt that is to be amortized in six equal quarterly payments at 2.6% interest per quarter on the unpaid balance.

PenioD	Payment	Invenest	REQUESTION	BALANCE						
	IATRON	(Nettes)	100000 (1010	UNLAGE.						
O	~	-	×.016	10,000						
1	1,821.58 -	- 260	1561.58	≥ 8,438.15						
٤	1,821.56	- 219.39 × 016	1602.19	6,835.96						
3	1621.58	177.74	1643.84	5192.40						
4	1821.58	135.00	1686.58	3505.62						
5	ક્યા. ડઇ	91.15	1730.43	1775.39						
6	1821.58	46.16	1775.42	- , c3 *						
0 [1 - /1 + i) - n]										
$\rho = \frac{i \left(\sum_{i=1}^{n} \frac{1}{i} \right)^{n}}{i}$										
R = -	Pi		(10,000)	.026						
(C -	1- (1+i)	<u> </u>	1 - 1.026 - 6							
= (\$1,821.5	8								
	7		* Last Partnews is adjusted							
			t change to make bacance							
			J 5 (3).							