1 Bernoulli Trials and Binomial Experiments

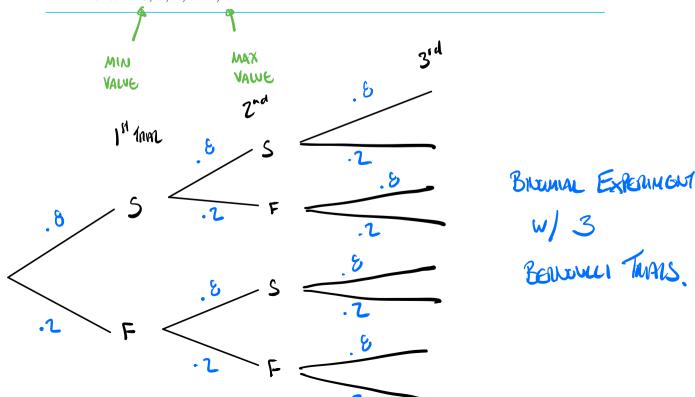
DEFINITION Bernoulli Trials

A sequence of experiments is called a **sequence of Bernoulli trials**, or a **binomial experiment**, if

- 1. Only two outcomes are possible in each trial.
- 2. The probability of success p for each trial is a constant (probability of failure is then q = 1 p).
- 3. All trials are independent.

Definition A **binomial experiment** is one that has these five characteristics:

- 1. The experiment consists of *n* identical trials.
- 2. Each trial results in one of two outcomes. For lack of a better name, the one outcome is called a success, S, and the other a failure, F.
- 3. The probability of success on a single trial is equal to p and remains the same from trial to trial. The probability of failure is equal to (1 p) = q.
- 4. The trials are independent.
- 5. We are interested in x, the number of successes observed during the n trials, for $x = 0, 1, 2, \ldots, n$.



- 1. Label each of the following experiments as binomial or not binomial.
- X (a) A single coin is flipped repeatedly until a head is observed and x is the number of flips.
- \checkmark (b) Seven cards are dealt from a shuffled deck of 52 cards and x is the number of aces dealt.
- (c) Due to a pandemic, only 1 out of every 5 customers is allowed into a particular store. Sarah visit this store on 7 consecutive days and x is the number times she is allowed into the store.
- \swarrow (d) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar simulteously \swarrow and x is the number of red marbles.
- (e) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar, replacing the marble after each selection, and x is the number of red marbles.

Definition A **binomial experiment** is one that has these five characteristics:

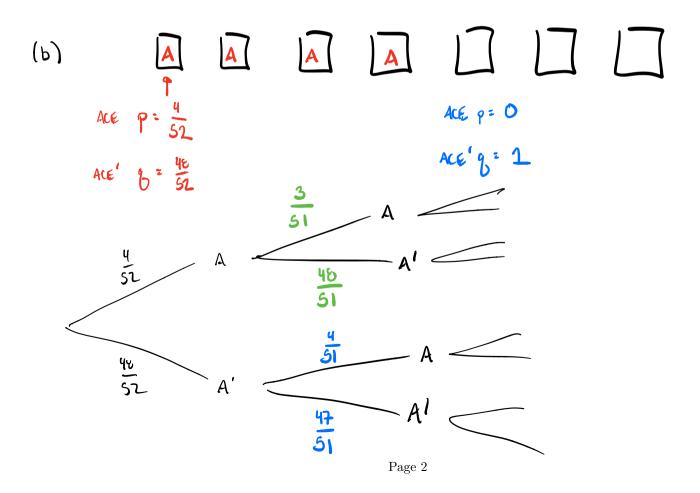
- 1. The experiment consists of *n* identical trials.
- 2. Each trial results in one of two outcomes. For lack of a better name, the one outcome is called a success, S, and the other a failure, F.
- 3. The probability of success on a single trial is equal to p and remains the same from trial to trial. The probability of failure is equal to (1 p) = q.
- 4. The trials are independent.

1=7

P= 1/5

n= 5

5. We are interested in x, the number of successes observed during the n trials, for $x = 0, 1, 2, \ldots, n$.



DEFINITION Binomial Distribution

$$P(X_n = x) = P(x \text{ successes in } n \text{ trials})$$
$$= {}_{n}C_{x}p^{x}q^{n-x} \qquad x \in \{0, 1, 2, \dots, n\}$$

where p is the probability of success and q is the probability of failure on each trial. Informally, we will write P(x) in place of $P(X_n = x)$.

- 2. Imagine two different six-sided fair dice, called die A and die B.
 - Die A has its faces labeled 1, 1, 1, 2, 2, 3.
 - Die B has its faces labeled 1, 2, 2, 3, 3, 3.
 - (a) What is the probability that die A is rolled 5 times and a 2 appears exactly 3 times?
- \rightarrow (b) What is the probability that die B is rolled 12 times and a 1 appears exactly 3 times?

You | Tay.

(a)
$$n=5$$
 Success = A 2 APRANS

 $p=\frac{2}{6}:\frac{1}{3}$
 $q=1-p=\frac{2}{3}$
 $p(x=3)=5$
 $p(x=3)=5$

Plot of PDF

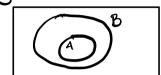
O \leq ANN INSECTED:

Show table of values

P($x=3$) = $x=3$
 $x=3$

Page 3

- 3. Imagine two different six-sided fair dice, called die A and die B.
 - Die A has its faces labeled 1, 1, 1, 2, 2, 3.
 - Die B has its faces labeled 1, 2, 2, 3, 3, 3.
- CHALLENGE.
- (a) What is the probability that die A is rolled 4 times and a 1 appears exactly 4 times, given that a 1 appears at least 3 times?
- What is the probability that die B is rolled 6 times and the numbers 1, 2, and 3 each appear exactly
- Plab)= Plab) CONDITIONAL PROBABILITY: 10)



1 APPEARS 4 TIMES

PLA B.

We need
$$P(A_1B) = P(A) = {}_{4}C_{4}(\frac{1}{2})^{4}(\frac{1}{2})^{6}$$

= $\frac{1}{16} \approx .0625$

$$n = 4$$
 $p = \frac{3}{6} = \frac{1}{2}$

When x is the number of successes in a series of n Bernoulli trials, the mean and standard deviation for x are

$$\mu = np, \qquad \sigma = \sqrt{npq}.$$

4. Let x represent be the number of success in 20 Bernoulli trials, each with probability of success p = .85. Find the mean (i.e. expected value) and standard deviation for x.

$$\mu = np = (20)(.85) = 17$$

STAUDARD DEL. FUL X.
$$G = \sqrt{npg} = \sqrt{(20)(.65)(.15)}$$

= $\sqrt{2.55} \approx 1.5969$

2 Normal Distributions

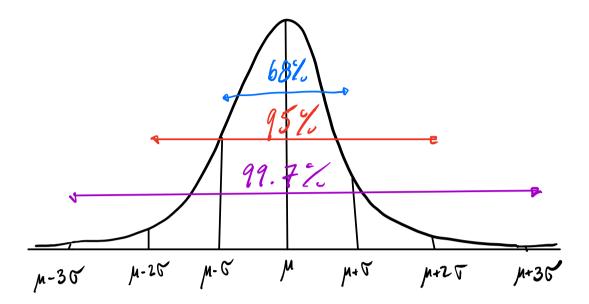


Figure 1: The 68-95-99.7 rule for normal distributions.

- 5. A machine in a bottling plant is set to dispense 12 oz of soda into cans. The machine is not perfect, and so every time the machine dispenses soda, the exact amount dispensed is a number x with a normal distriution. The mean and standard deviation for x are $\mu = 12$ oz and $\sigma = 0.15$ oz, respectively. Approximate the following probabilities using the 68-95-99.7 rule.
 - (a) Give a range of values such that the amount of soda in 68% of all cans filled by this machine are in this range.
 - (b) Give a range of values such that the amount of soda in 95% of all cans filled by this machine are in this range.
 - (c) Give a range of values such that the amount of soda in 99.7% of all cans filled by this machine are in this range.
 - (d) $P(11.85 \le x \le 12.15)$
 - (e) $P(11.70 \le x \le 12)$
 - (f) $P(x \le 11.70)$
 - (g) $P(12.3 \le x \le 12.45)$
 - (h) $P(x \le 12 \cup x \ge 12.45)$

Synnernic HALF OF 95%

> (a) Give a range of values such that the amount of soda in 68% of all cans filled by this machine are in [11.85, 12.15] this range.

12.15

(b) Give a range of values such that the amount of soda in 95% of all cans filled by this machine are in this range.

this range. [11.7, 12.3]
(c) Give a range of values such that the amount of soda in 99.7% of all cans filled by this machine are in this range. [11.55 , 12.45] $P(11.85 \le x \le 12.15)$

.475 (e) $P(11.70 \le x \le 12)$:

M-25

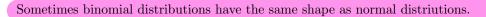
11.65

(f) $P(x \le 11.70)$

M-36

11.55

- (g) $P(12.3 \le x \le 12.45)$
- (h) $P(x \le 12 \cup x \ge 12.45)$



- 6. An experiment is composed of flipping a fair coin 100 times and counting the number of heads that appear x. Use a normal distribution and the 68-95-99.7 rule to provide rough estimates for the probabilities of the following events.
 - (a) You observe between 45 and 55 heads.
 - (b) You observe more than 60 heads.

