1108 Math for Business: Finite Binomial Distributions, Normal Distributions Module 9

1 Bernoulli Trials and Binomial Experiments

DEFINITION Bernoulli Trials

A sequence of experiments is called a sequence of Bernoulli trials, or a binomial
experiment, if

1. Only two outcomes are possible in each trial.

2. The probability of success p for each trial is a constant (probability of failure
istheng =1 — p).

3. All trials are independent.

Definition A binomial experiment is one that has these five characteristics:

1. The experiment consists of » identical trials.

2. Each trial results in one of two outcomes. For lack of a better name, the one out-
come is called a success, S, and the other a failure, F.

3. The probability of success on a single trial is equal to p and remains the same
from trial to trial. The probability of failure is equal to (1 — p) = q.

4. The trials are independent.

5. We are interested in x, the number of successes observed during the n trials,
forx=0,1,2,...,n.
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1. Label each of the following experiments as binomial or not binomial.
X (a) A single coin is flipped repeatedly until a head is observed and x is the number of flips.
¥ (b) Seven cards are dealt from a shuffled deck of 52 cards and x is the number of aces dealt.

(¢) Due to a pandemic, only 1 out of every 5 customers is allowed into a particular store. Sarah visit
this store on 7 consecutive days and x is the number times she is allowed into the store.

¥ (d) A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar simulteously

/ and zx is the number of red marbles.
(e)

A jar contains 20 marbles: 12 red and 8 blue. Jessica selects 5 marbles from the jar; replacing the
marble after each selection; and z is the number of red marbles.

Definition A binomial experiment is one that has these five characteristics:

1. The experiment consists of niidentical trials.

2. Each trial results in one of two outcomes. For lack of a better name, the one out-
come is called a success, S, and the other a failure, F.

3. The probability of success on a single trial is equal to p and remains the same
from trial to trial. The probability of failure is equal to (1 — p) = q.

4. The trials ar¢ independent.

5. We are interested in x, the number of successes observed during the n trials,
forx=0,1,2,...,n
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DEFINITION Binomial Distribution
P(X, = x) = P(x successes in n trials)
= anpan_x X € {0, 1, 2,. c ey n}

where(p is the probability of success and g is the probability of failure on each trial.
Informally, we will write P(x) in place of P(X, = x).

2. Imagine two different six-sided fair dice, called die A and die B.
e Die A has its faces labeled 1, 1, 1, 2, 2, 3.
e Die B has its faces labeled 1, 2, 2, 3, 3, 3.

(a) What is the probability that die A is rolled 5 times and a 2 appears exactly 3 times?
(b) What is the probability that die B is rolled 12 times and a 1 appears exactly 3 times?
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3. Imagine two different six-sided fair dice, called die A and die B.

e Die A has its faces labeled 1, 1, 1, 2, 2, 3.

e Die B has its faces labeled 1, 2, 2, 3, 3, 3.

\ (a) What is the probability that die A is rolled 4 times and a 1 appears exactly 4 times, given that a 1

appears at least 3 times?
(«\‘\A\/"Q‘Db

(b) What is the probability that die B is rolled 6 times and the numbers 1, 2, and 3 each appear exactly

twice? )
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When z is the number of successes in a series of n Bernoulli trials, the mean and standard deviation for
x are

p=mnp,  o=./npq.

4. Let x represent be the number of success in 20 Bernoulli trials, each with probability of success p = .85.
Find the mean (i.e. expected value) and standard deviation for x.
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2 Normal Distributions
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Figure 1: The 68-95-99.7 rule for normal distributions.

5. A machine in a bottling plant is set to dispense 12 oz of soda into cans. The machine is not perfect,
and so every time the machine dispenses soda, the exact amount dispensed is a number x with a normal
distriution. The mean and standard deviation for x are’u = 12 oz and ¢ = 0.15 o0z, respectively.
Approximate the following probabilities using the 68-95-99.7 rule.

(a) Give a range of values such that the amount of soda in 68% of all cans filled by this machine are in
this range.

(b) Give a range of values such that the amount of soda in 95% of all cans filled by this machine are in
this range.

(¢) Give a range of values such that the amount of soda in 99.7% of all cans filled by this machine are
in this range.

) P(11.85 < z < 12.15)
) P(11.70 < z < 12)

) P(z < 11.70)

) P(12.3 < 2 < 12.45)

) P(z < 12Uz > 12.45)
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(a) Give a range of values such that the amount of soda in 68% of all cans filled by this machine are in

this range. Ll\_bf‘ ﬂ.'{]

(b) Give a range of values such that the amount of soda in 95% of all cans filled by this machine are in

this range.
e [N, N.%] » |

(¢) Give a range of values such that the amount of soda in 99.7% of all cans filled by this machine are
in this range.
in this range [“:SY \ nNY ]

D P(11.85 <z < 12.15)

1n0<r<12) = Y}

(
(
(z < 11.70)
(
(

12.3 <z < 12.45)

P
P
P
Pz < 12Uz > 12.45)



Sometimes binomial distributions have the same shape as normal distriutions.

6. An experiment is composed of flipping a fair coin 100 times and counting the number of heads that appear
x. Use a normal distribution and the 68-95-99.7 rule to provide rough estimates for the probabilities of
the following events.

(a) You observe between 45 and 55 heads.
(b) You observe more than 60 heads.
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