FINANCIAL MATH FORMULAS

JOHN ADAMSKI

ABSTRACT. Some important formulas.

1. Simple interest

Used by default for short-term loans/investments.

• I = interest

• P = principal

• r = annual interest rate (decimal)

• t = time (years)

• A = account balance/future value

$$\boxed{I = Prt} \qquad \boxed{A = P + I = P(1 + rt)}$$

2. Compound interest

- P = principal
- r = annual interest rate (decimal)
- n = number of compound periodsper year
- t = time (years)

- A = account balance/compoundamount
- r_E = effective rate/annual percentage yield (APY)

$$A = P\left(1 + \frac{r}{n}\right)^{nt} = P\left(1 + r_E\right)^t$$

$$r_E = \left(1 + \frac{r}{n}\right)^n - 1$$

$$r_E = \left(1 + \frac{r}{n}\right)^n - 1$$

3. Future value of an annuity

An **ordinary annuity** is a sequence of equal size payments made into an account earning compound interest at the end of each payment/compound period. The term **annuity due** means that payments are made at the beginning of each payment/compound period.

- S_n = future value of annuity n = total number of payment pe-
- R = recurring payment

- $\bullet i$ = interest rate per payment/compound period
- D_n = future value of annuity due

$$S_n = \frac{R[(1+i)^n - 1]}{i}$$

$$D_n = S_{n+1} - R$$

$$D_n = S_{n+1} - R$$

4. Present value of an annuity

- P = present value of annuity
- n = total number of payment periods
- R = recurring payment
- $\bullet i$ = interest rate per payment/compound period

$$P = \frac{R[1 - (1+i)^{-n}]}{i}$$

DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY Email address: jadamski1@fordham.edu

 URL : www.johnadamski.com