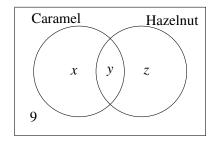
## Finite Math, MATH 1100

Exercises review 3 (for the final exam)

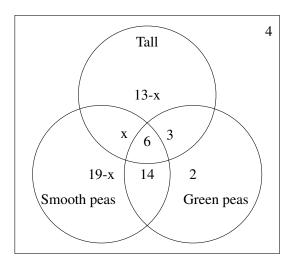
## **Solutions**

1. We draw a Venn diagram:



We have x+y=60 and x+9=41, which implies x=41-9=32 and y=60-x=60-32=28. Thus, 28 people liked both.

2. Let *x* indicate the number of plants that were tall and had smooth peas but not green. The Venn diagram of the problem is the following:



We set up the equation:

$$19 - x + x + 13 - x + 3 + 6 + 14 + 2 + 4 = 50.$$

The solutions is given by x = 11.

3. (a) Since  $P(E \cup F) = 0.8$ , then  $P(E' \cap F') = 1 - 0.8 = 0.2$ . We have

$$P(E'|F') = \frac{P(E' \cap F')}{P(F')} = \frac{0.2}{1 - 0.3} = \frac{0.2}{0.7} = \boxed{\frac{2}{7}}.$$

1

We have  $P(E' \cup F') = 1 - P(E \cap F)$ . we need to compute  $P(E \cap F)$ . From the union rule, we have

$$0.8 = P(E \cup F) = P(E) + P(F) - P(E \cap F) = 0.6 + 0.3 - P(E \cap F) \Longrightarrow P(E \cap F) = 0.1.$$

It follows that 
$$P(E' \cup F') = 1 - 0.1 = \boxed{0.9}$$
.

(b) We need to check if the multiplication rule is satisfied:

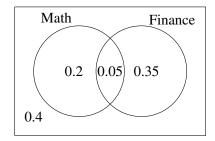
$$P(E \cap F) = 0.1 \neq 0.18 = 0.6 \cdot 0.3 = P(E) \cdot P(F),$$

and so *E* and *F* are not independent. Since  $P(E \cap F) = 0.1 \neq 0$ , it follows that *E* and *F* are not mutually exclusive.

4. Since  $P(\text{Math'} \cap \text{Finance'}) = 40/100 = 0.4$ , it follows that  $P(\text{Math} \cup \text{Finance}) = 1 - 0.4 = 0.6$ . Using the union rule, we have

$$0.6 = P(\text{Math} \cup \text{Finance}) = P(\text{Math}) + P(\text{Finance}) - P(\text{math} \cap \text{Finance})$$
  
=  $0.25 + 0.4 - P(\text{math} \cap \text{Finance}) \Longrightarrow P(\text{math} \cap \text{Finance}) = 0.05$ .

The Venn diagram of the probabilities of the events is given by

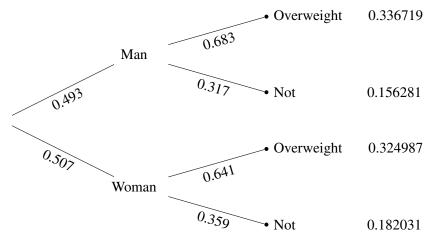


It follows that:

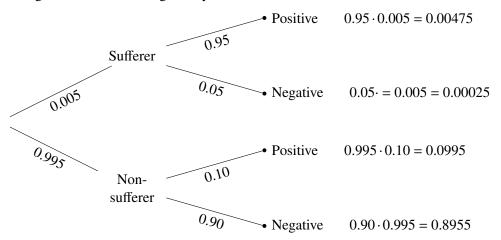
- (a)  $P(Math \cap Finance) = \boxed{0.05}$ .
- (b) Using conditional probability:

$$P(\text{Math}|\text{Finance}) = \frac{P(\text{Math} \cap \text{Finance})}{P(\text{Finance})} = \frac{0.05}{0.4} = \boxed{0.125}.$$

5. The tree diagram of the events is given by



- (a) 33.7%.
- (b)  $0.336719 + 0.324987 = 0.661706 \approx 66.2\%$
- (c) No, since  $P(\text{man} \cap \text{overweight}) = 0.336719 \neq 0.493 \cdot 0.661706 = P(\text{man}) \cdot P(\text{overweight})$ .
- 6. The tree diagram of the events is given by



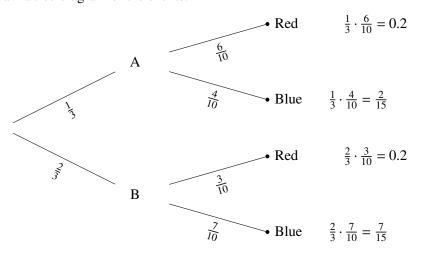
- (a)  $P(\text{positive}) = 0.00475 + 0.0995 = \boxed{0.10425}$
- (b) We have

$$P(\text{sufferer} | \text{positive}) = \frac{P(\text{sufferer} \cap \text{positive})}{P(\text{positive})} = \frac{0.00475}{0.10425} = \boxed{0.0456}.$$

(c) We have

$$P(\text{non-sufferer} | \text{negative}) = \frac{P(\text{non-sufferer} \cap \text{negative})}{P(\text{negative})} = \frac{0.8955}{0.00025 + 0.8955} = \boxed{0.9997}$$

7. We draw a tree diagram of the events.



We have

$$P(A|\text{blue}) = \frac{P(A \cap \text{blue})}{P(\text{blue})} = \frac{2/15}{2/15 + 7/15} = \boxed{\frac{2}{9}}.$$

8. (a) Those starting with K are  $25 \cdot 24 \cdot 23 = 13,800$ , and the same for those starting with W. Thus, in total there are  $13,800 + 13,800 = \boxed{27,600}$ .

3

- (b) Those starting with K are  $26 \cdot 26 \cdot 26 = 17,756$ , and the same for those starting with W. Thus, in total there are  $17,576 + 17,576 = \boxed{35,152}$ .
- (c) Those starting with K are  $24 \cdot 23 = 552$ , and the same for those starting with W. Thus, in total there are  $552 + 552 = \boxed{1,104}$ .
- 9. (a)  $C(10,3) = \boxed{120}$ 
  - (b)  $C(6,2) \times C(4,2) = 15 \times 6 = \boxed{90}$ .
  - (c) Since only 4 employees do not have college degree, to form a group of 5 employees one must necessary have a college degree. We have:
    - i. groups with one with college degree:  $C(6,1) \times C(4,4) = 6 \times 1 = 6$ ;
    - ii. groups with two with college degree:  $C(6,2) \times C(4,3) = 15 \times 4 = 60$ ;
    - iii. groups with three with college degree:  $C(6,3) \times C(4,2) = 20 \times 6 = 120$ .

In total, we have  $6+60+120 = \boxed{186}$  such groups.

10. 
$$\frac{C(10,5) + C(3,1) \cdot C(10,4)}{C(13,5)} = \frac{252 + 3 \cdot 210}{1,287} = \frac{882}{1,287} = \boxed{0.69}.$$

11. We use binomial probability with n = 10, k = 3 and p = 0.35:

$$C(10,3)0.35^3(1-0.35)^7 = \boxed{0.252}$$

12. We have 
$$P(X = 10) = \frac{13}{52} \times \frac{12}{51} \times \frac{11}{50} = 0.013$$
,  $P(X = 5) = \frac{26}{52} \times \frac{25}{51} \times \frac{24}{50} = 0.118$  and  $P(X = 0) = 1 - 0.013 - 0.118 = 0.869$ . It follows that

$$E(X) = 0 \times 0.869 + 5 \times 0.118 + 10 \times 0.013 = \boxed{\$0.72}$$

13. The mean is given by

$$\overline{x} = \frac{22 + 34 + 45 + 66 + 72 + 81 + 90}{7} = \boxed{58.57}.$$

The median is given by 66.

- 14. (a) The z-score is given by  $\frac{2,000-1,500}{300} = 1.67$ . The area to the left of 1.67 is given by 0.95254, therefore the area to the right is given by  $1-0.95254=0.04746\approx \boxed{0.05}$ .
  - (b) Let X denote the number of SAT takers who scored more than 2,000 out of the 10 selected. Then X is a binomial random variable with n = 10 and p = 0.05. We have

$$P(X = 3) = C(10,3) \cdot 0.05^3 \cdot (1 - 0.05)^7 = 120 \cdot 0.05^3 \cdot 0.95^7 = \boxed{0.01}$$

- 15. (a) The z-score is given by  $\frac{60-80}{10} = -2.00$ . The area to the left is given by  $0.02275 \approx \boxed{2.28\%}$ .
  - (b) Let  $x_A$  the cutoff for an A, and let  $z_A$  be the corresponding z-score. From the tables, we have  $z_A = 0.53$ . It follows that  $x_A = 80 + 0.53 \times 10 = 85.3$ . Let then  $x_C$  be the cutoff for the C range. From the tables, we have  $z_C = -0.53$ . It follows that  $x_C = 80 0.53 \times 10 = 74.7$ . To sum up (here X denote the grade):

A range:  $X \ge 85.3$ B range:  $74.7 \le X \le 85.3$ C range: X < 74.7

16. We use compound interest with A = 15,000, m = 12, t = 10 and r = 0.06:

$$A = P\left(1 + \frac{r}{m}\right)^{mt} = 15,000 \times \left(1 + \frac{0.06}{12}\right)^{12 \times 10} = \left[\$27,290.95\right].$$

The interest is given by  $I = A - P = \boxed{\$12,290.95}$ 

17. We use the compound interest formula with A = 7,500, m = 4, r = 0.055, t = 9, and solve for P:

$$7,500 = P\left(1 + \frac{0.055}{4}\right)^{36} \Longrightarrow P = \frac{7,500}{(1.01375)^{36}} = \boxed{\$4,587.23}$$

18. We use the formula for the future value of an annuity with D = \$100, m = 12, i = r/m = 0.0225/12 = 0.001875 and t = 2:

$$F = D\frac{(1+i)^{mt} - 1}{i} = 100 \times \frac{(1+0.001875)^{24} - 1}{0.001875} = \boxed{\$2,452.47}.$$

The principal is given by  $P = 100 \times 12 \times 2 = \$2,400$ . The interest earned is given by  $I = F - P = 2,452.47 - 2,400 = \boxed{\$52.47}$ .

19. We use the formula for the amortization of a loan with P = 14,000, i = r/m = 0.07/4 = 0.0175,  $n = mt = 4 \times 4 = 16$ :

$$D = \frac{Pi}{1 - (1 + i)^{-n}} = \frac{14,000 \times 0.0175}{1 - (1.0175)^{-16}} = \boxed{\$1,010.79}$$

The total amount paid is given by  $A = 1,010.79 \times 16 = \$16,172.64$ . The interest is given by  $I = A - P = 16,172.64 - 14,000 = \left[\$2,172.64\right]$ .

20. We use the formula for the amortization of a loan with P = 55,000, i = r/m = 0.047/12 = 0.003917,  $n = mt = 12 \times 10 = 120$ :

$$D = \frac{Pi}{1 - (1 + i)^{-n}} = \frac{55,000 \times 0.003917}{1 - (1.003917)^{-120}} = \boxed{\$575.34}$$

The total amount paid is given by  $A = 575.34 \times 120 = \$69,040.80$ . The interest is given by  $I = A - P = 69,040.80 - 55,000 = \boxed{\$14,040.8}$ .

21. (a) We use the amortization formula with  $P = 150,000, n = 30 \times 12 = 360, i = 0.061/12 = 0.0051$ :

5

$$D = \frac{Pi}{1 - (1 + i)^{-n}} = \frac{150,000 \times 0.0051}{1 - (1.0051)^{-360}} = \boxed{\$910.93}$$

(b) We use the present value of an annuity formula with  $n = 20 \times 12 = 240$ , i = 0.0051 and D = 910.93:

$$P = D \frac{1 - (1 + i)^{-n}}{i} = 910.93 \frac{1 - (1.0051)^{-240}}{0.0051} = \boxed{\$125, 928.44}.$$

22. We use the continuous compounding formula

$$A = Pe^{rt}$$

and solve for t:

$$r = \frac{1}{t} \ln \left( \frac{A}{P} \right).$$

We set A = 40,000, P = 25,000 and t = 6:

$$r = \frac{1}{6} \ln \left( \frac{40,000}{25,000} \right) = \boxed{7.83\%}.$$

23. We use the formula for the future value of an annuity

$$F = D \frac{(1+i)^n - 1}{i}$$

and solve for *D*:

$$D = \frac{Fi}{(1+i)^n - 1}.$$

We set F = 50,000, i = 0.0612/12 = 0.0051 and  $n = 6 \times 12 = 72$ :

$$D = \frac{50,000 \times 0.0051}{(1.0051)^{72} - 1} = \boxed{\$576.48}.$$

24. We use continuous compounding with A = 2P and r = 0.062, and solve for t:

$$2P = Pe^{0.062t} \Longrightarrow 2 = e^{0.062t} \Longrightarrow 0.062t = \ln 2 \Longrightarrow t = \frac{\ln 2}{0.062} = \boxed{11.18 \text{ years}}.$$

25. We use the formula for the present value of an annuity with D = 2,000, i = r/m = 0.08/4 = 0.02 and n = mt = 20:

$$P = D \frac{1 - (1+i)^{-n}}{i} = 2,000 \cdot \frac{1 - (1+0.02)^{-20}}{0.02} = \boxed{\$32,702.87}.$$