Exam 2

- 1. When setting up a new phone, the owner must set a 6-digit password consisting of digits 0-9. How many passwords are possible if . . .
 - (a) (4 points) there are no password restrictions?
 - (b) (4 points) consecutive digits cannot be the same?
 - (c) (4 points) the first digit must be 1, the last digit must be 6, and no two digits can be the same?

(a)
$$10 \times 10 \times 10 \times 10 \times 10 \times 10^{5} = 1,000,000$$

(b) $10 \times 9 \times 9 \times 9 \times 9 = 10 \times 9^{5} = 590,490$
(c) $1 \times 8 \times 7 \times 6 \times 5 \times 1 = 18,4$

- 2. A school drama club has 24 members. Assuming that no one can be assigned two different roles, in how many different way can they choose ...
 - (a) (5 points) 1 person to be acting director, 1 person to be musical director, and 1 person to be choregrapher?
 - (b) (5 points) 2 people to be acting directors, 3 people to be musical directors, and 4 people to be choregraphers?

- 3. 4 socks are randomly selected from a drawer that contains 4 black socks, 6 grey socks, 8 blue socks, and 10 white socks.
 - (a) (6 points) What is the probability that none of the socks are black?
 - (b) (6 points) What is the probability that at least 2 of the socks are white?
 - (c) (6 points) What is the probability that all of the socks are the same color?

(a)
$$P(NO BLACK) = \frac{n(NO BLACK)}{n(S)} = \frac{C(24,4)}{C(28,4)} = \frac{10,626}{20,475} \approx .5190$$

(b) $P(M LEAST 2 WHITE) = P(2 WHITE) + P(3 WHITE) + P(4 WHITE)$

$$= \frac{C(10,2)C(16,2)}{C(26,4)} + \frac{C(10,3)C(16,1)}{C(26,4)} + \frac{C(10,4)C(16,0)}{C(26,4)}$$

$$= \frac{6,885 + 2,160 + 210}{20,475} = \frac{9255}{20,475} \approx .4520$$

ALTERNATIVELY: Let
$$A = A1$$
 least 2 socks are white $A' = 0$ on 1 sock is white $P(A') = P(0) + P(1) = \frac{C(10,0)C(18,4)}{C(28,4)} + \frac{C(10,1)C(18,3)}{C(28,4)}$

$$= \frac{3.060}{20.475} + \frac{8.160}{20.475} = \frac{11.220}{20.475} \approx .5480$$

$$\therefore P(A) = 1 - P(A') \approx 1 - .5480 = .4520$$

(c) Plan same) = Plan Black) + Plan Grey) + Plan Blue) + Plan White)
$$= \frac{C(4,4) + C(6,4) + C(8,4) + C(10,4)}{C(28,4)}$$

$$= \frac{296}{20,475} \approx .0145$$

4. (8 points) Suppose 18% of all lotto tickets win some prize money. If you buy 15 tickets, what is the probability that exactly 5 tickets win some prize money?

BIDOMIAL EXPERIMENT
$$n = 15$$
 $P(x) = C(n, x) P^{x} g^{n-x}$

$$P(x) = C(n, x) P^{x} g^{n-x}$$

$$P(5) = C(15, 5) (.82)^{(0)} \approx .0780$$

- 5. A delivery company charges a flat rate of \$11.99 to deliver any small package within 2 days, and they guarentee on-time delivery. That is, if a package is not delivered on-time, the company refunds the charge of \$11.99 to the customer. Suppose it costs the company \$6.45 to deliver each package (regardless of whether it is delivered on time or not), and 92% of packages are delivered on time. Define the random variable x to be the net gain/loss experienced by this company on each delivery.
 - (a) (8 points) Describe the probability distribution for x by filling in a table like the one below.

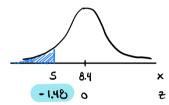
$$egin{array}{c|c} x & & & \\ \hline p(x) & & & & \\ \hline \end{array}$$

(b) (4 points) Find the expected value E(x), and very briefly explain the significance of this number for the delivery company.

(a)
$$\frac{x}{p(x)} = \frac{5.54}{.92} = \frac{-6.45}{.08}$$

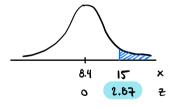
(b) $E(x) = p(x_1)x_1 + p(x_2)x_2 = \frac{.92(5.54) + .08(-6.45)}{.92(5.54) + .08(-6.45)} = \frac{4.5808}{.00}$

ON AVERAGE, THE COMPANY PROFITS # 4.58 PER PACKAGE THEN DELIVER

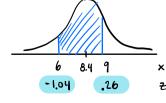

6. Consider the following sample of 7 measurements.

- (a) (4 points) Calculate the mean.
- (b) (4 points) Calculate the median.

$$(a) \bar{X} = \frac{57 + 68 + 67 + 94 + 59 + 66 + 80}{7} = \frac{511}{7} = 73$$

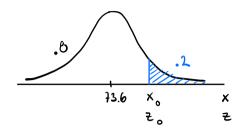

- 7. The amount of time x that each caller spends on hold waiting to speak with a customer service representative is a random variable. Suppose x has a normal distribution with mean $\mu = 8.4$ minutes and standard deviation $\sigma = 2.3$ minutes.
 - (a) (8 points) Find the probability that a randomly selected caller waits less than 5 minutes to speak with a customer service representative.
 - (b) (8 points) Find the probability that a randomly selected caller waits more than 15 minutes to speak with a customer service representative.
 - (c) (8 points) Find the probability that a randomly selected caller waits between 6 and 9 minutes to speak with a customer service representative.

(a)


$$\frac{2 - x - \mu}{\sigma} = \frac{5 - 8.4}{2.3} \approx -1.48$$

16)

$$Z = \frac{15 - 8.4}{2.3} \approx 2.87$$


(c)

$$P(6 \le x \le 9) = P(x \le 9) - P(x \le 6)$$

= $P(2 \le .26) - P(2 \le -1.04)$
= .6026 - .1492
= .4534

$$2 = \frac{6 - 8.4}{1.3} \approx -1.04$$
 $2 = \frac{9 - 8.4}{2.3} \approx .26$

8. (8 points) Suppose the final grades of a statistics class are normally distributed with mean $\mu = 73.6$ and standard deviation $\sigma = 9.8$. The professor decides to curve the grades so that she will give A's to the top 20% of the class (i.e. 80th percentile). Find the cutoff score in order to get an A.

$$z_0 = \frac{x_0 - \mu}{\sigma}$$
 => $x_0 = z_0 + \mu = .84(9.8) + 73.6 = 81.832$